An analytical system based on a compact flow cytometer for DNA fragment sizing and single-molecule detection

被引:29
作者
Habbersett, RC [1 ]
Jett, JH [1 ]
机构
[1] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA
关键词
DNA fragment sizing; phycoerythrin; single-molecule detection; flow cytometry; photon counting; avalanche photodiode;
D O I
10.1002/cyto.a.20042
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Previous reports have demonstrated accurate DNA fragment sizing of linear DNA fragments, from 564 to approximate to4 x 10(5) bp, in a flow system. B-phycoerythrin (B-PE), commonly used in conventional cytometric applications that require high-sensitivity, was the first fluorophore detected in flow at the single-molecule level. Methods: Dilute solutions of stained DNA fragments or B-PE were analyzed in a simplified, compact flow system, with enhanced performance and lower cost, utilizing a solid-state laser and a single-photon sensing avalanche photodiode detector (SSAPD). Extensive data processing and display software, developed specifically for the photon-counting data stream, extracts correlated height, width, and area features from bursts of photons due to discrete molecules passing through the sensing region in the flow channel. Results: DNA fragment sizing in flow has now been demonstrated for SYTOX-orange-stained fragments ranging in size over 3.4 orders of magnitude, from 125 to 5 x 10(5) bp. For Lambda bacteriophage DNA (X DNA; 48.5 kbp) a CV of 1.2% has been achieved. Analysis of a femtomolar B-PE solution demonstrates that the bursts of photons from individual molecules can be baseline-resolved with 0.5 mW of laser power at a signal to noise ratio (SNR) of approximate to30, with approximate to100 photons detected from each molecule. Conclusions: A compact, low-power, high-sensitivity system detects DNA fragments as small as 125 bp or individual B-PE molecules in a flowing liquid stream. Demonstrated linearity, sensitivity, and resolution indicate that <1.0 mW of laser power is optimal, permitting further miniaturization of the system and additional cost reduction. Comprehensive analytical software exploits the standard cytometric paradigm of multiple 2D graphs and gating to extract features from classes of individually analyzed biomolecules. This complete system is thus poised to engage high-sensitivity applications not amenable to conventional flow cytometric instrumentation. Published 2004 Wiley-Liss, Inc.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 45 条
  • [1] Two-color fluorescence in flow cytometry DNA sizing: Identification of single molecule fluorescent probes
    Agronskaia, A
    Schins, JM
    de Grooth, BG
    Greve, J
    [J]. ANALYTICAL CHEMISTRY, 1999, 71 (20) : 4684 - 4689
  • [2] Agronskaia A, 1998, CYTOMETRY, V32, P255, DOI 10.1002/(SICI)1097-0320(19980701)32:3<255::AID-CYTO12>3.3.CO
  • [3] 2-H
  • [4] Polarization effects in flow cytometric DNA sizing
    Agronskaia, A
    Schins, JM
    de Grooth, BG
    Greve, J
    [J]. APPLIED OPTICS, 1999, 38 (04) : 714 - 719
  • [5] AMBROSE WP, 2003, TOPICS FLUORESCENCE, V7, P239
  • [6] [Anonymous], DATA REDUCTION ERROR
  • [7] [Anonymous], [No title captured]
  • [8] FLUORESCENCE DETECTION AND SIZE MEASUREMENT OF SINGLE DNA-MOLECULES
    CASTRO, A
    FAIRFIELD, FR
    SHERA, EB
    [J]. ANALYTICAL CHEMISTRY, 1993, 65 (07) : 849 - 852
  • [9] LASER-INDUCED FLUORESCENCE OF FLOWING SAMPLES AS AN APPROACH TO SINGLE-MOLECULE DETECTION IN LIQUIDS
    DOVICHI, NJ
    MARTIN, JC
    JETT, JH
    TRKULA, M
    KELLER, RA
    [J]. ANALYTICAL CHEMISTRY, 1984, 56 (03) : 348 - 354
  • [10] Molecular shot noise, burst size distribution, and single-molecule detection in fluid flow: Effects of multiple occupancy
    Enderlein, J
    Robbins, DL
    Ambrose, WP
    Keller, RA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (30) : 6089 - 6094