Oxidase activity in the developing xylem of branches of Sitka spruce [Picea sitchensis] (Bong) Carr. was expressed in synchrony with the deposition of lignin. The activity was closely associated with the cell wall but it could be extracted by elution with salt solutions such as I hi NaCl or CaCl2. A number of different oxidase isoforms with isoelectric points in the range 8-5 were present in these cell wall extracts. These enzymes displayed a marked preference for the oxidation of coniferyl alcohol and efficiently initiated polymerization of coniferyl alcohol into insoluble, lignin-like polymers. They also had a substrate preference and profile of sensitivity to inhibitors that was dissimilar to those reported for classical catechol oxidase or laccase-type polyphenol oxidases. A novel procedure that combines extraction and affinity chromatography on Concanavalin-A to select high-mannose-type glycoproteins provided oxidase activity at higher purity and yield than previously used methods. A single band of oxidase activity (apparent M-r approx. 84 kDa) which was capable of oxidizing alpha-naphthol/N,N,N'N'-tetramethyl p-phenylene diamine in the absence of added hydrogen peroxide was detected in these cell wall extracts using non-denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The addition of hydrogen peroxide did not intensify the staining of this band but it confirmed the presence of a true peroxidase band of apparent M-r approx. 40 kDa. The properties of this coniferyl alcohol oxidase are different from those of laccase-type polyphenol oxidases (EC 1.10.3.2) previously implicated in lignin deposition in tree species, and their possible roles in this process are discussed.