Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production

被引:82
作者
Roberts, Seth B. [1 ,3 ]
Gowen, Christopher M. [1 ]
Brooks, J. Paul [2 ,3 ]
Fong, Stephen S. [1 ,3 ]
机构
[1] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
[3] Virginia Commonwealth Univ, Ctr Study Biol Complex, Richmond, VA 23284 USA
关键词
ESCHERICHIA-COLI; ADAPTIVE EVOLUTION; HYDROGEN-PRODUCTION; FLUX ANALYSIS; FERMENTATION; NETWORK; RECONSTRUCTION; GROWTH; CELLULOSE; MODEL;
D O I
10.1186/1752-0509-4-31
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Microorganisms possess diverse metabolic capabilities that can potentially be leveraged for efficient production of biofuels. Clostridium thermocellum (ATCC 27405) is a thermophilic anaerobe that is both cellulolytic and ethanologenic, meaning that it can directly use the plant sugar, cellulose, and biochemically convert it to ethanol. A major challenge in using microorganisms for chemical production is the need to modify the organism to increase production efficiency. The process of properly engineering an organism is typically arduous. Results: Here we present a genome-scale model of C. thermocellum metabolism, iSR432, for the purpose of establishing a computational tool to study the metabolic network of C. thermocellum and facilitate efforts to engineer C. thermocellum for biofuel production. The model consists of 577 reactions involving 525 intracellular metabolites, 432 genes, and a proteomic-based representation of a cellulosome. The process of constructing this metabolic model led to suggested annotation refinements for 27 genes and identification of areas of metabolism requiring further study. The accuracy of the iSR432 model was tested using experimental growth and by-product secretion data for growth on cellobiose and fructose. Analysis using this model captures the relationship between the reduction-oxidation state of the cell and ethanol secretion and allowed for prediction of gene deletions and environmental conditions that would increase ethanol production. Conclusions: By incorporating genomic sequence data, network topology, and experimental measurements of enzyme activities and metabolite fluxes, we have generated a model that is reasonably accurate at predicting the cellular phenotype of C. thermocellum and establish a strong foundation for rational strain design. In addition, we are able to draw some important conclusions regarding the underlying metabolic mechanisms for observed behaviors of C. thermocellum and highlight remaining gaps in the existing genome annotations.
引用
收藏
页数:17
相关论文
共 59 条
[1]   The Universal Protein Resource (UniProt) [J].
Bairoch, Amos ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Puy, Ghislaine Argoud ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
Saux, Virginie Bulliard-Le ;
decastro, Edouard ;
Ciampina, Luciane ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
David, Fabrice ;
Delbard, Gwennaelle ;
Dornevil, Dolnide ;
Duek-Roggli, Paula ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Feuermann, Marc ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gehant, Sebastian ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
Innocenti, Alessandro ;
James, Janet ;
Jain, Eric ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D190-D195
[2]   Thermodynamic constraints for biochemical networks [J].
Beard, DA ;
Babson, E ;
Curtis, E ;
Qian, H .
JOURNAL OF THEORETICAL BIOLOGY, 2004, 228 (03) :327-333
[3]   Flux analysis of underdetermined metabolic networks: The quest for the missing constraints [J].
Bonarius, HPJ ;
Schmid, G ;
Tramper, J .
TRENDS IN BIOTECHNOLOGY, 1997, 15 (08) :308-314
[4]   RELATIONSHIP BETWEEN SUBSTRATE CONCENTRATION AND FERMENTATION PRODUCT RATIOS IN CLOSTRIDIUM-THERMOCELLUM CULTURES [J].
BRENER, D ;
JOHNSON, BF .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1984, 47 (05) :1126-1129
[5]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[6]   Metabolic control analysis in drug discovery and disease [J].
Cascante, M ;
Boros, LG ;
Comin-Anduix, B ;
de Atauri, P ;
Centelles, JJ ;
Lee, PWN .
NATURE BIOTECHNOLOGY, 2002, 20 (03) :243-249
[7]   FATTY ACID COMPOSTION OF THERMOPHILIC, MESOPHILIC, AND PSYCHROPHILIC CLOSTRIDIA [J].
CHAN, M ;
HIMES, RH ;
AKAGI, JM .
JOURNAL OF BACTERIOLOGY, 1971, 106 (03) :876-&
[8]   Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major [J].
Chavali, Arvind K. ;
Whittemore, Jeffrey D. ;
Eddy, James A. ;
Williams, Kyle T. ;
Papin, Jason A. .
MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1) :177
[9]   Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge [J].
Chinn, Mari S. ;
Nokes, Sue E. ;
Strobel, Herbert J. .
BIORESOURCE TECHNOLOGY, 2007, 98 (11) :2184-2193
[10]   Optimality and evolutionary tuning of the expression level of a protein [J].
Dekel, E ;
Alon, U .
NATURE, 2005, 436 (7050) :588-592