Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect

被引:139
作者
Maka, M [1 ]
Stolt, CC [1 ]
Wegner, M [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Biochem, D-91054 Erlangen, Germany
关键词
sry; high-mobility-group; Sox10; enteric nervous system; Hirschsprung disease; megacolon;
D O I
10.1016/j.ydbio.2004.09.014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mice carrying heterozygous mutations in the Sox10 gene display aganglionosis of the colon and represent a model for human Hirschsprung disease. Here, we show that the closely related Sox8 functions as a modifier gene for Sox10-dependent enteric nervous system defects as it increases both penetrance and severity of the defect in Sox10 heterozygous mice despite having no detectable influence on enteric nervous system development on its own. Sox8 exhibits an expression pattern very similar to Sox10 with occurrence in vagal and enteric neural crest cells and later confinement to enteric glia. Loss of Sox8 alleles in Sox10 heterozygous mice impaired colonization of the gut by enteric neural crest cells already at early times. Whereas proliferation, apoptosis, and neuronal differentiation were normal for enteric neural crest cells in the gut of mutant mice, apoptosis was dramatically increased in vagal neural crest cells outside the gut. The defects in enteric nervous system development of mice with Sox10 and Sox8 mutations are therefore likely caused by a reduction of the pool of undifferentiated vagal neural crest cells. Our study suggests that Sox8 and Sox10 are jointly required for the maintenance of these vagal neural crest stem cells. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 169
页数:15
相关论文
共 50 条
[1]   Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a hirschsprung disease patient [J].
Angrist, M ;
Bolk, S ;
Halushka, M ;
Lapchak, PA ;
Chakravarti, A .
NATURE GENETICS, 1996, 14 (03) :341-344
[2]   Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET [J].
Barlow, A ;
de Graaff, E ;
Pachnis, V .
NEURON, 2003, 40 (05) :905-916
[3]   Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators [J].
Bowles, J ;
Schepers, G ;
Koopman, P .
DEVELOPMENTAL BIOLOGY, 2000, 227 (02) :239-255
[4]   The transcription factor Sox10 is a key regulator of peripheral glial development [J].
Britsch, S ;
Goerich, DE ;
Riethmacher, D ;
Peirano, RI ;
Rossner, M ;
Nave, KA ;
Birchmeier, C ;
Wegner, M .
GENES & DEVELOPMENT, 2001, 15 (01) :66-78
[5]   Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia [J].
Burns, AJ ;
Champeval, D ;
Le Douarin, NM .
DEVELOPMENTAL BIOLOGY, 2000, 219 (01) :30-43
[6]   Loss-of-function mutations in SIP1 Smad interacting protein 1 result in a syndromic Hirschsprung disease [J].
Cacheux, V ;
Dastot-Le Moal, F ;
Kääriäinen, H ;
Bondurand, N ;
Rintala, R ;
Boissier, B ;
Wilson, M ;
Mowat, D ;
Goossens, M .
HUMAN MOLECULAR GENETICS, 2001, 10 (14) :1503-1510
[7]   Functional analysis of Sox8 and Sox9 during sex determination in the mouse [J].
Chaboissier, MC ;
Kobayashi, A ;
Vidal, VIP ;
Lützkendorf, S ;
van de Kant, HJG ;
Wegner, M ;
de Rooij, DG ;
Behringer, RR ;
Schedl, A .
DEVELOPMENT, 2004, 131 (09) :1891-1901
[8]  
Chakravarti A., 2001, The Metabolic and Molecular Bases of Inherited Disease, P6231
[9]   Neural crest development is regulated by the transcription factor Sox9 [J].
Cheung, M ;
Briscoe, J .
DEVELOPMENT, 2003, 130 (23) :5681-5693
[10]   Appearance of neurons and glia with respect to the wavefront during colonization of the avian gut by neural crest cells [J].
Conner, PJ ;
Focke, PJ ;
Noden, DM ;
Epstein, ML .
DEVELOPMENTAL DYNAMICS, 2003, 226 (01) :91-98