Water-use efficiency of a mallee eucalypt growing naturally and in short-rotation coppice cultivation

被引:31
作者
Wildy, DT
Pate, JS
Sefcik, LT
机构
[1] Univ Western Australia, Cooperat Res Ctr Plant Based Management Dryland S, Crawley, WA 6009, Australia
[2] Univ Western Australia, Fac Nat & Agr Sci, Sch Plant Biol, Crawley, WA 6009, Australia
关键词
alley farming; carbon isotope composition; carbon partitioning; semi-arid environment; stomatal conductance; starch utilization;
D O I
10.1023/B:PLSO.0000037030.61945.0d
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This study compared mature Eucalyptus kochii subsp. plenissima trees in inner regions or edges of natural bushland to young trees belt-planted through cleared agricultural land as uncut saplings or regenerating coppice over 2.7 years at Kalannie, Western Australia (320 mm annual rainfall). We assessed the ability of the species to alter its gas exchange characteristics, leaf physical attributes, and water-use efficiency of foliar carbon assimilation (WUEi) or of total dry matter production (WUEDM). Stomatal conductance (g(s)) varied five-fold between treatment means, with coppices exhibiting greatest values and mature bush least. Photosynthetic rates followed this trend. Leaf photosynthetic capacity estimated by chlorophyll content varied 1.3-fold parallel with variations in leaf thickness, with coppices rating lowest and mature edge trees most highly. WUEi varied 1.5-fold between treatments and was greatest in mature inner-bush and edge trees. Leaf photosynthetic capacity and g, were both correlated with WUEi. Carbon isotope composition (delta(13)C values) of new shoot dry matter produced early in a seasonal flush were similar to those of root starch but when averaged over the whole season correlated well with WUEi and gas exchange characteristics of trees of each treatment. Coppices showed poorest WUEi and most negative shoot tip 613 C but their WUEDM was high. This discrepancy was suggested to relate to carbon allocation strategies in coppices favouring fast growth of replacement shoots but not of roots. Physiology of coppice growth of E. kochii is usefully geared towards both rapid and water-use efficient production of woody biomass in water limited environments.
引用
收藏
页码:111 / 128
页数:18
相关论文
共 74 条
[1]  
Allen SJ, 1999, TREE PHYSIOL, V19, P493
[2]  
ANDREW AH, 1979, AUSTR RANGELANDS J, V1, P777
[3]  
[Anonymous], KWONGAN PLANT LIFE S
[4]  
BASSMAN JH, 1982, FOREST SCI, V28, P599
[5]   Biomass, nutrient content and growth response to fertilisers of six-year-old Eucalyptus globulus plantations at three contrasting sites in Gippsland, Victoria [J].
Bennett, LT ;
Weston, CJ ;
Attiwill, PM .
AUSTRALIAN JOURNAL OF BOTANY, 1997, 45 (01) :103-121
[6]  
BINKLEY D, IN PRESS FOR ECOL MA
[7]  
BLAKE TJ, 1983, AUST FOREST RES, V13, P279
[8]  
BLAKE TJ, 1980, AUST J PLANT PHYSIOL, V7, P81
[9]  
BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6
[10]   Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees [J].
Clearwater, MJ ;
Meinzer, FC .
TREE PHYSIOLOGY, 2001, 21 (10) :683-690