The Balian-Low theorem for symplectic lattices in higher dimensions

被引:32
作者
Gröchenig, K
Han, DG
Heil, C [1 ]
Kutyniok, G
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] Univ Cent Florida, Dept Math, Orlando, FL 32826 USA
[4] Univ Gesamthsch Paderborn, Dept Math & Comp Sci, D-33095 Paderborn, Germany
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
Balian-Low theorem; frames; Gabor systems; modulation spaces; symplectic matrices; uncertainty principles;
D O I
10.1016/S1063-5203(02)00506-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Balian-Low theorem expresses the fact that time-frequency concentration is incompatible with non-redundancy for Gabor systems that form orthonormal or Riesz bases for L-2(R). We extend the Balian-Low theorem for Riesz bases to higher dimensions, obtaining a weak form valid for all sets of time-frequency shifts which form a lattice in R-2d, and a strong form valid for symplectic lattices in R-2d. For the orthonormal basis case, we obtain a strong form valid for general non-lattice sets which are symmetric with respect to the origin. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 1994, J FOURIER ANAL APPL, DOI DOI 10.1007/S00041-001-4016-5
[2]  
[Anonymous], 1985, PASSION PHYS ESSAYS, DOI 10.1142/97898112192070005
[3]  
BALAN R, 1998, CONT MATH, V216, P3, DOI DOI 10.1090/conm/216/02961
[4]  
BALIAN R, 1981, CR ACAD SCI II, V292, P1357
[5]   HEISENBERG PROOF OF THE BALIAN LOW THEOREM [J].
BATTLE, G .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (02) :175-177
[6]  
BENEDETTO JJ, 2002, BALIAN LOW THEOREM R
[7]  
Christensen O, 1999, APPL COMPUT HARMON A, V7, P292, DOI 10.1006/acha.1998.0271
[8]   2 THEOREMS ON LATTICE EXPANSIONS [J].
DAUBECHIES, I ;
JANSSEN, AJEM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :3-6
[9]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[10]   Gabor frames and time-frequency analysis of distributions [J].
Feichtinger, HG ;
Grochenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 146 (02) :464-495