Testing grain-surface chemistry in massive hot-core regions

被引:275
作者
Bisschop, S. E.
Jorgensen, J. K.
van Dishoeck, E. F.
de Wachter, E. B. M.
机构
[1] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands
[2] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
astrochemistry; line : identification; methods : observational; stars : formation; ISM : abundances; ISM : molecules;
D O I
10.1051/0004-6361:20065963
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We study the chemical origin of a set of complex organic molecules thought to be produced by grain surface chemistry in high mass young stellar objects (YSOs). Methods. A partial submillimeter line-survey was performed toward 7 high-mass YSOs aimed at detecting H2CO, CH3OH, CH2CO, CH3CHO, C2H5OH, HCOOH, HNCO and NH2CHO. In addition, lines of CH3CN, C2H5CN, CH3CCH, HCOOCH3, and CH3OCH3 were observed. Rotation temperatures and beam-averaged column densities are determined. To correct for beam dilution and determine abundances for hot gas, the radius and H-2 column densities of gas at temperatures > 100 K are computed using 850 mu m dust continuum data and source luminosity. Results. Based on their rotation diagrams, molecules can be classified as either cold (< 100 K) or hot (> 100 K). This implies that complex organics are present in at least two distinct regions. Furthermore, the abundances of the hot oxygen-bearing species are correlated, as are those of HNCO and NH2CHO. This is suggestive of chemical relationships within, but not between, those two groups of molecules. Conclusions. The most likely explanation for the observed correlations of the various hot molecules is that they are "first generation" species that originate from solid-state chemistry. This includes H2CO, CH3OH, C2H5OH, HCOOCH3, CH3OCH3, HNCO, NH2CHO, and possibly CH3CN, and C2H5CN. The correlations between sources implies very similar conditions during their formation or very similar doses of energetic processing. Cold species such as CH2CO, CH3CHO, and HCOOH, some of which are seen as ices along the same lines of sight, are probably formed in the solid state as well, but appear to be destroyed at higher temperatures. A low level of non-thermal desorption by cosmic rays can explain their low rotation temperatures and relatively low abundances in the gas phase compared to the solid state. The CH3CCH abundances can be fully explained by low temperature gas phase chemistry. No cold N-containing molecules are found.
引用
收藏
页码:913 / U123
页数:38
相关论文
共 88 条
[1]   PHOTOCHEMICAL AND THERMAL EVOLUTION OF INTERSTELLAR PRECOMETARY ICE ANALOGS [J].
ALLAMANDOLA, LJ ;
SANDFORD, SA ;
VALERO, GJ .
ICARUS, 1988, 76 (02) :225-252
[2]   Evolution of interstellar ices [J].
Allamandola, LJ ;
Bernstein, MP ;
Sandford, SA ;
Walker, RL .
SPACE SCIENCE REVIEWS, 1999, 90 (1-2) :219-232
[3]   MOLECULAR COMPOSITION OF DENSE INTERSTELLAR CLOUDS [J].
ALLEN, M ;
ROBINSON, GW .
ASTROPHYSICAL JOURNAL, 1977, 212 (02) :396-415
[4]   A detailed study of the rotating toroids in G31.41+0.31 and G24.78+0.08 [J].
Beltrán, MT ;
Cesaroni, R ;
Neri, R ;
Codella, C ;
Furuya, RS ;
Testi, L ;
Olmi, L .
ASTRONOMY & ASTROPHYSICS, 2005, 435 (03) :901-925
[5]   ORGANIC-COMPOUNDS PRODUCED BY PHOTOLYSIS OF REALISTIC INTERSTELLAR AND COMETARY ICE ANALOGS CONTAINING METHANOL [J].
BERNSTEIN, MP ;
SANDFORD, SA ;
ALLAMANDOLA, LJ ;
CHANG, S ;
SCHARBERG, MA .
ASTROPHYSICAL JOURNAL, 1995, 454 (01) :327-344
[6]   A lambda=1.3 millimeter aperture synthesis molecular line survey of Orion Kleinmann-Low [J].
Blake, GA ;
Mundy, LG ;
Carlstrom, JE ;
Padin, S ;
Scott, SL ;
Scoville, NZ ;
Woody, DP .
ASTROPHYSICAL JOURNAL, 1996, 472 (01) :L49-&
[7]   MOLECULAR ABUNDANCES IN OMC-1 - THE CHEMICAL-COMPOSITION OF INTERSTELLAR MOLECULAR CLOUDS AND THE INFLUENCE OF MASSIVE STAR FORMATION [J].
BLAKE, GA ;
SUTTON, EC ;
MASSON, CR ;
PHILLIPS, TG .
ASTROPHYSICAL JOURNAL, 1987, 315 (02) :621-645
[8]  
Boogert A. C., 2004, ASTRONOMICAL SOC PAC, V309, P547
[9]   Highly abundant HCN in the inner hot envelope of GL 2591:: Probing the birth of a hot core? [J].
Boonman, AMS ;
Stark, R ;
van der Tak, FFS ;
van Dishoeck, EF ;
van der Wal, PB ;
Schäfer, F ;
de Lange, G ;
Laauwen, WM .
ASTROPHYSICAL JOURNAL, 2001, 553 (01) :L63-L67
[10]  
Boudin N, 1998, ASTRON ASTROPHYS, V331, P749