A variant of Newton's method with accelerated third-order convergence

被引:660
作者
Weerakoon, S [1 ]
Fernando, TGI [1 ]
机构
[1] Univ Sri Jayewardenepura, Dept Math, Nugegoda, Sri Lanka
关键词
Newton's formula; nonlinear equations; iterative methods; order of convergence; function evaluations;
D O I
10.1016/S0893-9659(00)00100-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the given method, we suggest an improvement to the iteration of Newton's method. Derivation of Newton's method involves an indefinite integral of the derivative of the function, and the relevant area is approximated by a rectangle. In the proposed scheme, we approximate this indefinite integral by a trapezoid instead of a rectangle, thereby reducing the error in the approximation. It is shown that the order of convergence of the new method is three, and computed results support this theory. Even though we have shown that the order of convergence is three, in several cases, computational order of convergence is even higher. For most of the functions we tested, the order of convergence in Newton's method was less than two and for our method, it was always close to three. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 3 条
[1]  
Burden R. L., 2011, NUMERICAL ANAL, V9th
[2]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[3]  
FERNANDO TGI, 1997, P 53 ANN SESS SRI E, V1, P309