The cellular prion protein colocalizes with the dystroglycan compiler in the brain

被引:84
作者
Keshet, GI
Bar-Peled, O
Yaffe, D
Nudel, U
Gabizon, R [1 ]
机构
[1] Hadassah Hebrew Univ Hosp, Agnes Ginges Ctr Human Neurogenet, Dept Neurol, IL-91120 Jerusalem, Israel
[2] Weizmann Inst Sci, Dept Cell Biol, IL-76100 Rehovot, Israel
关键词
prion protein; neuronal nitric oxide synthase; dystrophin; glycoprotein complex;
D O I
10.1046/j.1471-4159.2000.0751889.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The function of PrPC, the cellular prion protein (PrP), is still unknown. Like other glycophosphatidylinositol-anchored proteins, PrP resides on Triton-insoluble, cholesterol-rich membranous microdomains, termed rafts. We have recently shown that the activity and subcellular localization of the neuronal isoform of nitric oxide synthase (nNOS) are impaired in adult PrP0/0 mice as well as in scrapie-infected mice. In this study, we sought to determine whether PrP and nNOS are part of the same functional complex and, if so, to identify additional components of such a complex. To this aim, we looked for proteins that coimmunoprecipitated with PrP in the presence of detergents either that completely dissociate rafts, to identify stronger interactions, or that preserve the raft structure, to identify weaker interactions. Using this detergent-dependent immunoprecipitation protocol we found that PrP interacts strongly with dystroglycan, a transmembrane protein that is the core of the dystrophin-glycoprotein complex (DGC). Additional results suggest that PrP also interacts with additional members of the DGC, including nNOS. PrP coprecipitated only with established presynaptic proteins, consistent with recent findings suggesting that PrP is a presynaptic protein.
引用
收藏
页码:1889 / 1897
页数:9
相关论文
共 51 条
[1]   NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre- and postsynaptic sites and in spines [J].
Aoki, C ;
Rhee, J ;
Lubin, M ;
Dawson, TM .
BRAIN RESEARCH, 1997, 750 (1-2) :25-40
[2]   PRION PROTEIN ISOFORMS, A CONVERGENCE OF BIOLOGICAL AND STRUCTURAL INVESTIGATIONS [J].
BALDWIN, MA ;
COHEN, FE ;
PRUSINER, SB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (33) :19197-19200
[3]   Different dystrophin-like complexes are expressed in neurons and glia [J].
Blake, DJ ;
Hawkes, R ;
Benson, MA ;
Beesley, PW .
JOURNAL OF CELL BIOLOGY, 1999, 147 (03) :645-657
[4]   NITRIC-OXIDE - A PHYSIOLOGICAL MESSENGER MOLECULE [J].
BREDT, DS ;
SNYDER, SH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1994, 63 :175-195
[5]   Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1-syntrophin mediated by PDZ domains [J].
Brenman, JE ;
Chao, DS ;
Gee, SH ;
McGee, AW ;
Craven, SE ;
Santillano, DR ;
Wu, ZQ ;
Huang, F ;
Xia, HH ;
Peters, MF ;
Froehner, SC ;
Bredt, DS .
CELL, 1996, 84 (05) :757-767
[6]  
Brown DR, 1998, J NEUROCHEM, V70, P1686
[7]   Normal prion protein has an activity like that of superoxide dismutase [J].
Brown, DR ;
Wong, BS ;
Hafiz, F ;
Clive, C ;
Haswell, SJ ;
Jones, IM .
BIOCHEMICAL JOURNAL, 1999, 344 :1-5
[8]  
BROWN DR, 2000, BIOCHEM J, V346, P758
[9]  
Claudepierre T, 2000, INVEST OPHTH VIS SCI, V41, P294
[10]   Mossy fibre reorganization in the hippocampus of prion protein null mice [J].
Colling, SB ;
Khana, M ;
Collinge, J ;
Jefferys, JGR .
BRAIN RESEARCH, 1997, 755 (01) :28-35