Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning

被引:506
作者
Lee, KH
Kim, HY [1 ]
Khil, MS
Ra, YM
Lee, DR
机构
[1] Chonbuk Natl Univ, Dept Text Engn, Chonju 561756, South Korea
[2] Chonbuk Natl Univ, Dept Adv Organ Mat Engn, Chonju 561756, South Korea
关键词
poly(epsilon-caprolactone); electrospinning; nanofibers;
D O I
10.1016/S0032-3861(02)00820-0
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nano-structured poly(e-caprolactone) (PCL) nonwoven mats were prepared by electrospinning process. In this study, three types of solution were used. One dissolved in only methylene chloride (MC), the second dissolved in mixture of MC and N,N-dimethylformamide (DMF), the third dissolved in mixture of MC and toluene. MC, toluene and DMF are a good, poor, and nonsolvent for PCL, respectively. For the MC only, electrospun fibers had very regular diameter of about 5500 nm, but electrospinng is not facilitated. For the mixture of MC and DMF, electrospinning is certainly enhanced as well as fiber diameter decreased dramatically as increasing DMF volume fraction. It was due to high electric properties of solution such as dielectric constant and conductivity. Whereas, as increasing toluene volume fraction, electrospinning is strictly restricted due to very high viscosity and low conductivity. As the results, it has regarded that solution properties is one of the important parameter in electrospinning. Properties such as conductivity, surface tension, viscosity and dielectric constant of the PCL solutions prepared from three types of solvent system were studied. The morphology, crystallinity and mechanical properties of electrospun PCL nonwoven mats were characterized by scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD) and universal testing method (UTM), respectively. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1287 / 1294
页数:8
相关论文
共 24 条
[1]  
ALBIN F, 1993, NONWOVENS THEORY PRO, pCH5
[2]   ELECTROSTATIC SPINNING OF ACRYLIC MICROFIBERS [J].
BAUMGARTEN, PK .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 36 (01) :71-+
[3]   Processing and microstructural characterization of porous biocompatible protein polymer thin films [J].
Buchko, CJ ;
Chen, LC ;
Shen, Y ;
Martin, DC .
POLYMER, 1999, 40 (26) :7397-7407
[4]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[5]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[6]  
Entov V. M., 1997, Fluid Dynamics, V32, P696
[7]   Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite [J].
Fong, H ;
Liu, WD ;
Wang, CS ;
Vaia, RA .
POLYMER, 2002, 43 (03) :775-780
[8]   Beaded nanofibers formed during electrospinning [J].
Fong, H ;
Chun, I ;
Reneker, DH .
POLYMER, 1999, 40 (16) :4585-4592
[9]  
Formhals A, 1934, United States patent US, Patent No. 1975504
[10]   Electrospun fiber mats: Transport properties [J].
Gibson, PW ;
Schreuder-Gibson, HL ;
Rivin, D .
AICHE JOURNAL, 1999, 45 (01) :190-195