Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces

被引:336
作者
Kovar, DR
Pollard, TD [1 ]
机构
[1] Yale Univ, Dept Mol, New Haven, CT 06520 USA
[2] Yale Univ, Dept Cellular, New Haven, CT 06520 USA
[3] Yale Univ, Dept Dev Biol, New Haven, CT 06520 USA
[4] Yale Univ, Dept Cell Biol, New Haven, CT 06520 USA
[5] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
关键词
D O I
10.1073/pnas.0405902101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Formins are large multidomain proteins required for assembly of actin cables that contribute to the polarity and division of animal and fungal cells. Formin homology-1 (FH1) domains bind profilin, and highly conserved FH2 domains nucleate actin filaments. We characterized the effects of two formins, budding yeast Bni1p and fission yeast Cdc12p, on actin assembly. We used evanescent wave fluorescence microscopy to observe assembly of actin filaments (i) nucleated by soluble formin FH1FH2 domains and (it) associated with formin FH1FH2 domains immobilized on microscope slides. Bni1p(FH1FH2)p and Cdc12p(FH1FH2)p nucleated new actin filaments or captured the barbed ends of preformed actin filaments that grew by insertion of subunits between the immobilized formin and the barbed end of the filament. Both formins remained bound to growing actin filament barbed ends for >1,000 sec. Elongation of a filament between an immobilized formin and a second anchor point buckled filament segments as short as 0.7 mum, demonstrating that polymerization of single actin filaments produces forces of > 1 piconewton, close to the theoretical maximum. After buckling, further growth produced long loops that did not supercoil, suggesting that formins do not stair step along the two subunits exposed on the growing barbed end. In agreement, Arp2/3 complex branched filaments did not rotate as they grew from formins attached to the slide surface. Formins are not mechanistically identical because barbed end elongation from Cdc12(FH1FH2)p, but not Bni1(FH1FH2)p, requires profilin. However, profilin increased the rate of Bni1(FH1FH2)p-mediated barbed end elongation from 75% to 100% of full-speed.
引用
收藏
页码:14725 / 14730
页数:6
相关论文
共 27 条
[1]   Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy [J].
Amann, KJ ;
Pollard, TD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15009-15013
[2]  
[Anonymous], 2001, MECH MOTOR PROTEINS
[3]   Hydrolysis of ATP by polymerized actin depends on the bound divalent cation but not profilin [J].
Blanchoin, L ;
Pollard, TD .
BIOCHEMISTRY, 2002, 41 (02) :597-602
[4]   Actin-based motility: from molecules to movement [J].
Carlier, MF ;
Le Clainche, C ;
Wiesner, S ;
Pantaloni, D .
BIOESSAYS, 2003, 25 (04) :336-345
[5]   Measurement of the force-velocity relation for growing microtubules [J].
Dogterom, M ;
Yurke, B .
SCIENCE, 1997, 278 (5339) :856-860
[6]   Compression forces generated by actin comet tails on lipid vesicles [J].
Giardini, PA ;
Fletcher, DA ;
Theriot, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) :6493-6498
[7]   FLEXURAL RIGIDITY OF MICROTUBULES AND ACTIN-FILAMENTS MEASURED FROM THERMAL FLUCTUATIONS IN SHAPE [J].
GITTES, F ;
MICKEY, B ;
NETTLETON, J ;
HOWARD, J .
JOURNAL OF CELL BIOLOGY, 1993, 120 (04) :923-934
[8]   The mouse formin, FRLα, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments [J].
Harris, ES ;
Li, F ;
Higgs, HN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :20076-20087
[9]   Actin polymerization-driven molecular movement of mDia1 in living cells [J].
Higashida, C ;
Miyoshi, T ;
Fujita, A ;
OcegueraYanez, F ;
Monypenny, J ;
Andou, Y ;
Narumiya, S ;
Watanabe, N .
SCIENCE, 2004, 303 (5666) :2007-2010
[10]   FLEXIBILITY OF ACTIN-FILAMENTS DERIVED FROM THERMAL FLUCTUATIONS - EFFECT OF BOUND NUCLEOTIDE, PHALLOIDIN, AND MUSCLE REGULATORY PROTEINS [J].
ISAMBERT, H ;
VENIER, P ;
MAGGS, AC ;
FATTOUM, A ;
KASSAB, R ;
PANTALONI, D ;
CARLIER, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (19) :11437-11444