Dissection of genetically complex traits with extremely large pools of yeast segregants

被引:313
作者
Ehrenreich, Ian M. [1 ,2 ,3 ]
Torabi, Noorossadat [1 ,4 ]
Jia, Yue [1 ,3 ]
Kent, Jonathan [1 ]
Martis, Stephen [1 ]
Shapiro, Joshua A. [1 ,2 ,3 ]
Gresham, David [1 ]
Caudy, Amy A. [1 ]
Kruglyak, Leonid [1 ,2 ,3 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08540 USA
[3] Princeton Univ, Howard Hughes Med Inst, Princeton, NJ 08540 USA
[4] Princeton Univ, Dept Mol Biol, Princeton, NJ 08540 USA
关键词
SACCHAROMYCES-CEREVISIAE; LOCI; IDENTIFICATION; ARCHITECTURE; MICROARRAYS; MUTATION; DISEASES;
D O I
10.1038/nature08923
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most heritable traits, including many human diseases(1), are caused by multiple loci. Studies in both humans and model organisms, such as yeast, have failed to detect a large fraction of the loci that underlie such complex traits(2,3). A lack of statistical power to identify multiple loci with small effects is undoubtedly one of the primary reasons for this problem. We have developed a method in yeast that allows the use of much larger sample sizes than previously possible and hence permits the detection of multiple loci with small effects. The method involves generating very large numbers of progeny from a cross between two Saccharomyces cerevisiae strains and then phenotyping and genotyping pools of these offspring. We applied the method to 17 chemical resistance traits and mitochondrial function, and identified loci for each of these phenotypes. We show that the level of genetic complexity underlying these quantitative traits is highly variable, with some traits influenced by one major locus and others by at least 20 loci. Our results provide an empirical demonstration of the genetic complexity of a number of traits and show that it is possible to identify many of the underlying factors using straightforward techniques. Our method should have broad applications in yeast and can be extended to other organisms.
引用
收藏
页码:1039 / U101
页数:6
相关论文
共 29 条
  • [1] Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae
    Brauer, Matthew J.
    Christianson, Cheryl M.
    Pai, Dave A.
    Dunham, Maitreya J.
    [J]. GENETICS, 2006, 173 (03) : 1813 - 1816
  • [2] The landscape of genetic complexity across 5,700 gene expression traits in yeast
    Brem, RB
    Kruglyak, L
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) : 1572 - 1577
  • [3] Genetic dissection of transcriptional regulation in budding yeast
    Brem, RB
    Yvert, G
    Clinton, R
    Kruglyak, L
    [J]. SCIENCE, 2002, 296 (5568) : 752 - 755
  • [4] The Genetic Architecture of Maize Flowering Time
    Buckler, Edward S.
    Holland, James B.
    Bradbury, Peter J.
    Acharya, Charlotte B.
    Brown, Patrick J.
    Browne, Chris
    Ersoz, Elhan
    Flint-Garcia, Sherry
    Garcia, Arturo
    Glaubitz, Jeffrey C.
    Goodman, Major M.
    Harjes, Carlos
    Guill, Kate
    Kroon, Dallas E.
    Larsson, Sara
    Lepak, Nicholas K.
    Li, Huihui
    Mitchell, Sharon E.
    Pressoir, Gael
    Peiffer, Jason A.
    Rosas, Marco Oropeza
    Rocheford, Torbert R.
    Cinta Romay, M.
    Romero, Susan
    Salvo, Stella
    Sanchez Villeda, Hector
    da Silva, H. Sofia
    Sun, Qi
    Tian, Feng
    Upadyayula, Narasimham
    Ware, Doreen
    Yates, Heather
    Yu, Jianming
    Zhang, Zhiwu
    Kresovich, Stephen
    McMullen, Michael D.
    [J]. SCIENCE, 2009, 325 (5941) : 714 - 718
  • [5] Identification and Dissection of a Complex DNA Repair Sensitivity Phenotype in Baker's Yeast
    Demogines, Ann
    Smith, Erin
    Kruglyak, Leonid
    Alani, Eric
    [J]. PLOS GENETICS, 2008, 4 (07):
  • [6] Quantitative trait loci mapped to single-nucleotide resolution in yeast
    Deutschbauer, AM
    Davis, RW
    [J]. NATURE GENETICS, 2005, 37 (12) : 1333 - 1340
  • [7] Polymorphisms in Multiple Genes Contribute to the Spontaneous Mitochondrial Genome Instability of Saccharomyces cerevisiae S288C Strains
    Dimitrov, Lazar N.
    Brem, Rachel B.
    Kruglyak, Leonid
    Gottschling, Daniel E.
    [J]. GENETICS, 2009, 183 (01) : 365 - 383
  • [8] Genetic basis of proteome variation in yeast
    Foss, Eric J.
    Radulovic, Dragan
    Shaffer, Scott A.
    Ruderfer, Douglas M.
    Bedalov, Antonio
    Goodlett, David R.
    Kruglyak, Leonid
    [J]. NATURE GENETICS, 2007, 39 (11) : 1369 - 1375
  • [9] A 'natural' mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1)
    Gaisne, M
    Bécam, AM
    Verdière, J
    Herbert, CJ
    [J]. CURRENT GENETICS, 1999, 36 (04) : 195 - 200
  • [10] Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes
    Gresham, David
    Curry, Bo
    Ward, Alexandra
    Gordon, D. Benjamin
    Brizuela, Leonardo
    Kruglyak, Leonid
    Botstein, David
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (04) : 1482 - 1487