Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography

被引:222
作者
Gross, J
Tass, PA
Salenius, S
Hari, R
Freund, HJ
Schnitzler, A
机构
[1] Univ Dusseldorf, Dept Neurol, D-40225 Dusseldorf, Germany
[2] Forschungszentrum Julich, Inst Med, D-52425 Julich, Germany
[3] Aalto Univ, Low Temp Lab, Brain Res Unit, FIN-02015 Espoo, Finland
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2000年 / 527卷 / 03期
关键词
D O I
10.1111/j.1469-7793.2000.00623.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Magnetoencephalographic (MEG) and electromyographic (EMG;) signals were recorded from six subjects during isometric contraction of four different muscles. 2. Cortical sources were located from the MEG signal which was averaged timelocked to the onset of motor unit potentials. A spatial filtering algorithm was used to estimate the source activity. Sources were found in the primary motor cortex (M1) contralateral to the contracted muscle. Significant coherence between rectified EMG and M1 activity was seen in the 20 Hz frequency range in all subjects. 3. Interactions between the motor cortex and spinal motoneuron pool were investigated by separately studying the non-stationary phase and amplitude dynamics of M1 and EMG signals. 4. Delays: between M1 and EMG signals, computed from their phase difference, were found to be in agreement with conduction times from the primary motor cortex to the respective muscle. The time-dependent cortico-muscular phase synchronization was found to be correlated with the time course of both M1 and EMG signals. 5. The findings demonstrate that the coupling between the primary motor cortex and motoneuron pool is at least partly due to phase synchronization of 20 Hz oscillations which varies over time. Furthermore, the consistent phase lag between M1 and EMG signals, compatible with conduction time between M1 and the respective muscle with the M1 activity preceding EMG activity, supports the conjecture that the motor cortex drives the motoneuron pool.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 43 条
[1]   122-CHANNEL SQUID INSTRUMENT FOR INVESTIGATING THE MAGNETIC SIGNALS FROM THE HUMAN BRAIN [J].
AHONEN, AI ;
HAMALAINEN, MS ;
KAJOLA, MJ ;
KNUUTILA, JET ;
LAINE, PP ;
LOUNASMAA, OV ;
PARKKONEN, LT ;
SIMOLA, JT ;
TESCHE, CD .
PHYSICA SCRIPTA, 1993, T49A :198-205
[2]  
Auger F., 1999, TIME FREQUENCY TOOLB
[3]   Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation [J].
Baker, SN ;
Olivier, E ;
Lemon, RN .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 501 (01) :225-241
[4]   The role of synchrony and oscillations in the motor output [J].
Baker, SN ;
Kilner, JM ;
Pinches, EM ;
Lemon, RN .
EXPERIMENTAL BRAIN RESEARCH, 1999, 128 (1-2) :109-117
[5]   Coherent cortical and muscle discharge in cortical myoclonus [J].
Brown, P ;
Farmer, SF ;
Halliday, DM ;
Marsden, J ;
Rosenberg, JR .
BRAIN, 1999, 122 :461-472
[6]   Cortical correlate of the piper rhythm in humans [J].
Brown, P ;
Salenius, S ;
Rothwell, JC ;
Hari, R .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (06) :2911-2917
[7]   Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man [J].
Conway, BA ;
Halliday, DM ;
Farmer, SF ;
Shahani, U ;
Maas, P ;
Weir, AI ;
Rosenberg, JR .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 489 (03) :917-924
[8]  
Conway BA, 1998, J PHYSIOL-LONDON, V509P, p175P
[9]   Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements [J].
Donoghue, JP ;
Sanes, JN ;
Hatsopoulos, NG ;
Gaál, G .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (01) :159-173
[10]   THE FREQUENCY CONTENT OF COMMON SYNAPTIC INPUTS TO MONONEURONES STUDIED DURING VOLUNTARY ISOMETRIC CONTRACTION IN MAN [J].
FARMER, SF ;
BREMNER, FD ;
HALLIDAY, DM ;
ROSENBERG, JR ;
STEPHENS, JA .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 470 :127-155