A side chain in S6 influences both open-state stability and ion permeation in a voltage-gated K+ channel

被引:30
作者
Liu, Y [1 ]
Joho, RH [1 ]
机构
[1] Univ Texas, SW Med Ctr, Dept Cell Biol & Neurosci, Dallas, TX 75235 USA
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 1998年 / 435卷 / 05期
关键词
potassium channel; gating; pore; ion selectivity; channel mutants;
D O I
10.1007/s004240050566
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Conservative substitutions of the conserved cysteine 393 (Cys(393)) in S6 of the voltage-gated K+ channel Kv2.1 predictably alter the stability of the open state and the conductances for K+ and Rb+. The polarity of the side chain at position 393 determines the stability of the open state, probably by interaction of S6 with the narrow part of the ion-conduction pathway; however, the substitutions at position 393 have no effect on the stability of the closed state. An increase in side-chain volume leads to greater K+ conductance; in contrast, gradual decreases in side-chain volume lead to progressively smaller K+ conductances concomitantly with larger Rb+ conductances. Although the substitutions for Cys(393) alter open-state stability and ion permeation, they have no effect on block by external or internal tetraethylammonium (TEA). Our data indicate that molecular determinants that are involved in conformational transitions between the open state and the brief closed state (i.e., voltage-independent gating) and ion selectivity are located within the sphere of influence of the conserved Cys(393) in, S6. This region is physically separated from the voltage-controlled activation gate located on the intracellular side of the K+ channel.
引用
收藏
页码:654 / 661
页数:8
相关论文
共 46 条
[1]   THE P-REGION AND S6 OF KV3.1 CONTRIBUTE TO THE FORMATION OF THE ION CONDUCTION PATHWAY [J].
AIYAR, J ;
NGUYEN, AN ;
CHANDY, KG ;
GRISSMER, S .
BIOPHYSICAL JOURNAL, 1994, 67 (06) :2261-2264
[2]   TOPOLOGY OF THE PORE-REGION OF A K+ CHANNEL REVEALED BY THE NMR-DERIVED STRUCTURES OF SCORPION TOXINS [J].
AIYAR, J ;
WITHKA, JM ;
RIZZI, JP ;
SINGLETON, DH ;
ANDREWS, GC ;
LIN, W ;
BOYD, J ;
HANSON, DC ;
SIMON, M ;
DETHLEFS, B ;
LEE, CL ;
HALL, JE ;
GUTMAN, GA ;
CHANDY, KG .
NEURON, 1995, 15 (05) :1169-1181
[3]   The signature sequence of voltage-gated potassium channels projects into the external vestibule [J].
Aiyar, J ;
Rizzi, JP ;
Gutman, GA ;
Chandy, KG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (49) :31013-31016
[4]   BLOCK OF SQUID AXON K-CHANNELS BY INTERNALLY AND EXTERNALLY APPLIED BARIUM IONS [J].
ARMSTRONG, CM ;
SWENSON, RP ;
TAYLOR, SR .
JOURNAL OF GENERAL PHYSIOLOGY, 1982, 80 (05) :663-682
[6]   MOLECULAR-BASIS OF GATING CHARGE IMMOBILIZATION IN SHAKER POTASSIUM CHANNELS [J].
BEZANILLA, F ;
PEROZO, E ;
PAPAZIAN, DM ;
STEFANI, E .
SCIENCE, 1991, 254 (5032) :679-683
[7]   GATING OF SHAKER K+ CHANNELS .2. THE COMPONENTS OF GATING CURRENTS AND A MODEL OF CHANNEL ACTIVATION [J].
BEZANILLA, F ;
PEROZO, E ;
STEFANI, E .
BIOPHYSICAL JOURNAL, 1994, 66 (04) :1011-1021
[8]   THE INTERNAL QUATERNARY AMMONIUM RECEPTOR-SITE OF SHAKER POTASSIUM CHANNELS [J].
CHOI, KL ;
MOSSMAN, C ;
AUBE, J ;
YELLEN, G .
NEURON, 1993, 10 (03) :533-541
[9]  
Creighton T.E., 1997, PROTEINS STRUCTURES, VSecond
[10]   Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel [J].
Durell, SR ;
Guy, HR .
NEUROPHARMACOLOGY, 1996, 35 (07) :761-773