Thermodynamic properties of the Williams, OPLS-AA, and MMFF94 all-atom force fields for normal alkanes

被引:103
作者
Chen, B [1 ]
Martin, MG [1 ]
Siepmann, JI [1 ]
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1998年 / 102卷 / 14期
关键词
D O I
10.1021/jp9801065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of several all-atom force fields for alkanes is compared and evaluated. Configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out to calculate the vapor-liquid phase equilibria for methane, ethane, n-butane, n-pentane, and n-octane. The Williams, OPLS-AA, and MMFF94 force fields were selected as representative all-atom models for this study because they were fitted using three different strategies (Williams, crystal structures and heats of sublimation; OPLS-AA, liquid densities and heats of vaporization; MMFF94, rare gas pair potentials and quantum mechanics) and employ potentials with the different functional forms to describe nonbonded van der Waals interactions (Williams, Buckingham exp-r(-6) OPLS-AA, Lennard-Jones 12-6; MMFF94, buffered 14-7). It is shown that seemingly small differences in the potential functions can account for very large changes in the fluid-phase behavior. The Williams and OPLS-AA force fields yield liquid densities, boiling temperatures, and critical points that are in acceptable, albeit not in quantitative agreement with experiments, whereas the fluid-phase behavior of the MMFF94 model shows very large deviations.
引用
收藏
页码:2578 / 2586
页数:9
相关论文
共 50 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids
[2]  
[Anonymous], UNPUB
[3]   Interaction of the van der Waals type between three atoms [J].
Axilrod, BM ;
Teller, E .
JOURNAL OF CHEMICAL PHYSICS, 1943, 11 (06) :299-300
[4]  
Berthelot D. C. R., 1898, CR HEBD ACAD SCI, V126, P1703, DOI DOI 10.1002/ANDP.18812480110
[6]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[7]   SIMULATION OF POLYETHYLENE ABOVE AND BELOW THE MELTING-POINT [J].
DEPABLO, JJ ;
LASO, M ;
SUTER, UW .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :2395-2403
[8]   PARALLEL MONTE-CARLO SIMULATIONS [J].
ESSELINK, K ;
LOYENS, LDJC ;
SMIT, B .
PHYSICAL REVIEW E, 1995, 51 (02) :1560-1568
[9]   NOVEL SCHEME TO STUDY STRUCTURAL AND THERMAL-PROPERTIES OF CONTINUOUSLY DEFORMABLE MOLECULES [J].
FRENKEL, D ;
MOOIJ, GCAM ;
SMIT, B .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (12) :3053-3076
[10]  
Halgren TA, 1996, J COMPUT CHEM, V17, P520, DOI 10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO