The residual pro-part of cathepsin C fulfills the criteria required for an intramolecular chaperone in folding and stabilizing the human proenzyme

被引:28
作者
Cigic, B
Dahl, SW
Pain, RH
机构
[1] Jozef Stefan Inst, Dept Biochem & Mol Biol, Ljubljana 1000, Slovenia
[2] Unizyme Labs, DK-2970 Horsholm, Denmark
关键词
D O I
10.1021/bi0008837
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 13.5 kDa N-terminal part of the propeptide remains associated with mature cathepsin C after proteolytic activation and excision of the activation peptide. This residual pro-part, isolated from the recombinant enzyme, folds spontaneously and rapidly to a stable, compact monomer with secondary structure and stable tertiary interactions. Folding and unfolding kinetics of the residual pro-part with intact disulfides are complex, and accumulation of transient intermediates is observed. The cleaved form of the pro-part isolated from natural human cathepsin C also folds, suggesting that the intact form comprises two folding domains. The linkages of the two disulfide bridges have been established as 30-118 and 54-136 for the native enzyme. The native disulfide bends can be re-formed from the fully reduced and denatured state by oxidative refolding, resulting in a domain that is spectroscopically indistinguishable from the original refolded residual pro-part. Both disulfides are solvent-exposed and can be reduced in the absence of denaturant. The reduced form retains most or all of the native tertiary structure and is only approximate to 2 kcal.mol(-1) less stable than the oxidized form. It folds fast relative to the rate of biosynthesis, to the same conformation as the oxidized form. Folding and disulfide formation are sequential. These results indicate that the proenzyme folds sequentially in vivo and that the residual pro-part constitutes a rapidly and independently folding domain that stabilizes the mature enzyme. It thus fulfills the criteria required of an intramolecular chaperone. It may also be involved in stabilizing the tetrameric structure of the mature enzyme.
引用
收藏
页码:12382 / 12390
页数:9
相关论文
共 52 条
[1]   FAVORABLE EQUILIBRIA FOR STOICHIOMETRY IN REACTION OF PROTEIN DISULFIDE GROUPS WITH ELLMAN REAGENT [J].
ACKERMAN, RJ ;
ROBYT, JF .
ANALYTICAL BIOCHEMISTRY, 1972, 50 (02) :656-&
[2]   α-lytic protease precursor:: Characterization of a structured folding intermediate [J].
Anderson, DE ;
Peters, RJ ;
Wilk, B ;
Agard, DA .
BIOCHEMISTRY, 1999, 38 (15) :4728-4735
[3]   A PROTEIN-FOLDING REACTION UNDER KINETIC CONTROL [J].
BAKER, D ;
SOHL, JL ;
AGARD, DA .
NATURE, 1992, 356 (6366) :263-265
[4]  
BERGMAN LW, 1979, J BIOL CHEM, V254, P5690
[5]   Multiple kinetic intermediates accumulate during the unfolding of horse cytochrome c in the oxidized state [J].
Bhuyan, AK ;
Udgaonkar, JB .
BIOCHEMISTRY, 1998, 37 (25) :9147-9155
[6]   Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases [J].
Carmona, E ;
Dufour, E ;
Plouffe, C ;
Takebe, S ;
Mason, P ;
Mort, JS ;
Menard, R .
BIOCHEMISTRY, 1996, 35 (25) :8149-8157
[7]   Competitive inhibition of cathepsin C by guanidinium ions and reexamination of substrate inhibition [J].
Cigic, B ;
Pain, RH .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 258 (01) :6-10
[8]   Stoichiometry and heterogeneity of the pro-region chain in tetrameric human cathepsin C [J].
Cigic, B ;
Krizaj, I ;
Kralj, B ;
Turk, V ;
Pain, RH .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1998, 1382 (01) :143-150
[9]   KINETIC ROLE OF A METASTABLE NATIVE-LIKE 2-DISULFIDE SPECIES IN THE FOLDING TRANSITION OF BOVINE PANCREATIC TRYPSIN-INHIBITOR [J].
CREIGHTON, TE ;
GOLDENBERG, DP .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 179 (03) :497-526
[10]  
Creighton Thomas E., 1992, P301