Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations

被引:629
作者
Rao, CV [1 ]
Rawlings, JB
Mayne, DQ
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[2] Univ Wisconsin, Dept Chem Engn, Madison, WI 53706 USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
基金
美国国家科学基金会;
关键词
constraints; model predictive control (MPC); moving horizon estimation (MHE); optimization; state estimation;
D O I
10.1109/TAC.2002.808470
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State estimator design for a nonlinear discrete-time system is a challenging problem, further complicated when additional physical insight is available in the form of inequality constraints on the slate variables and disturbances. One strategy for constrained state estimation is to employ online optimization using a moving horizon approximation. In this article we propose a general theory for constrained moving horizon estimation. Sufficient conditions for asymptotic and bounded stability are established. We apply these results to develop a practical algorithm for constrained linear and nonlinear state estimation. Examples are used to illustrate the benefits of constrained state estimation. Our framework is deterministic.
引用
收藏
页码:246 / 258
页数:13
相关论文
共 43 条
[1]   Decomposition algorithms for on-line estimation with nonlinear DAE models [J].
Albuquerque, JS ;
Biegler, LT .
COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 (03) :283-299
[2]   A neural state estimator with bounded errors for nonlinear systems [J].
Alessandri, A ;
Baglietto, M ;
Parisini, T ;
Zoppoli, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) :2028-2042
[3]  
BASAR T, 1995, HINFINITY OPTIMAL CO
[4]  
BEMPORAD A, 1999, 1999 AM CONTR C SAN
[5]   NONLINEAR PREDICTIVE CONTROL USING MULTIRATE SAMPLING [J].
BEQUETTE, BW .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1991, 69 (01) :136-143
[6]  
Bertsekas D.P., 2005, DYNAMIC PROGRAMMING, V1
[7]  
BINDER T, 1998, NATO ASI NONLINEAR M
[9]  
GESTHUISEN R, 1998, 1998 IFAC DYCOPS S C
[10]   COMPARISON OF 2 APPROACHES TO ONLINE PARAMETER AND STATE ESTIMATION OF NONLINEAR-SYSTEMS [J].
JANG, SS ;
JOSEPH, B ;
MUKAL, H .
INDUSTRIAL & ENGINEERING CHEMISTRY PROCESS DESIGN AND DEVELOPMENT, 1986, 25 (03) :809-814