Multipartite generalization of the Schmidt decomposition

被引:140
作者
Carteret, HA [1 ]
Higuchi, A [1 ]
Sudbery, A [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
关键词
D O I
10.1063/1.1319516
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a canonical form for pure states of a general multipartite system, in which the constraints on the coordinates (with respect to a factorizable orthonormal basis) are simply that certain ones vanish and certain others are real. For identical particles they are invariant under permutations of the particles. As an application, we find the dimension of the generic local equivalence class. (C) 2000 American Institute of Physics. [S0022-2488(00)00512-0].
引用
收藏
页码:7932 / 7939
页数:8
相关论文
共 14 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]  
BRUN TA, QUANTPH0005124
[3]   Multiparticle entanglement [J].
Carteret, HA ;
Linden, N ;
Popescu, S ;
Sudbery, A .
FOUNDATIONS OF PHYSICS, 1999, 29 (04) :527-552
[4]  
CARTERET HA, 2000, J PHYS A, V33, P1
[5]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[6]   Computing local invariants of quantum-bit systems [J].
Grassl, M ;
Rotteler, M ;
Beth, T .
PHYSICAL REVIEW A, 1998, 58 (03) :1833-1839
[7]   Multiparticle entanglement and its applications to cryptography [J].
Kempe, J .
PHYSICAL REVIEW A, 1999, 60 (02) :910-916
[8]  
Linden N, 1998, FORTSCHR PHYS, V46, P567, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<567::AID-PROP567>3.0.CO
[9]  
2-H
[10]  
Makhlin Y., QUANTPH0002045