Persistent effects of high frequency repetitive TMS on the coupling between motor areas in the human

被引:51
作者
Oliviero, A
Strens, LHA
Lazzaro, V
Tonali, PA
Brown, P
机构
[1] Univ Cattolica Sacro Cuore, Ist Neurol, I-00168 Rome, Italy
[2] Inst Neurol, Sobell Dept Motor Neurosci & Movement Disorders, London WC1N 3BG, England
[3] IRCCS Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy
关键词
repetitive transcranial magnetic stimulation; motor cortex; coherence; EEG;
D O I
10.1007/s00221-002-1344-x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Repetitive transcranial magnetic stimulation (rTMS) shows promise as a treatment for various movement and psychiatric disorders. How rTMS may have persistent effects on cortical function remains unclear. We hypothesised that it may act by modulating cortico-cortical connectivity. To this end we assessed cortico-cortical coherence before and after high frequency rTMS of the motor cortex. Sixteen healthy subjects received a single train (5 Hz, active motor threshold, 50 stimuli) of rTMS to the left motor hand area. Spectral power and coherence estimates were calculated between different EEG signals at rest and while muscles of the distal upper limb were tonically contracted. Repetitive TMS over the left motor hand area caused a significant decrease in the intrahemispheric EEG-EEG coherence between motor and premotor cortex in the 10.7-13.6 Hz (upper alpha band) lasting a few minutes after stimulation. There was no significant change in interhemispheric EEG-EEG coherence between motor areas. Thus, high frequency rTMS of the motor cortex decreases ipsilateral cortico-cortical intrahemispheric in the upper alpha band.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 60 条
[1]   On the existence of different alpha band rhythms in the hand area of man [J].
Andrew, C ;
Pfurtscheller, G .
NEUROSCIENCE LETTERS, 1997, 222 (02) :103-106
[2]   Facilitation of muscle evoked responses after repetitive cortical stimulation in man [J].
Berardelli, A ;
Inghilleri, M ;
Rothwell, JC ;
Romeo, S ;
Currà, A ;
Gilio, F ;
Modugno, N ;
Manfredi, M .
EXPERIMENTAL BRAIN RESEARCH, 1998, 122 (01) :79-84
[3]   OPTIMAL FOCAL TRANSCRANIAL MAGNETIC ACTIVATION OF THE HUMAN MOTOR CORTEX - EFFECTS OF COIL ORIENTATION, SHAPE OF THE INDUCED CURRENT PULSE, AND STIMULUS-INTENSITY [J].
BRASILNETO, JP ;
COHEN, LG ;
PANIZZA, M ;
NILSSON, J ;
ROTH, BJ ;
HALLETT, M .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1992, 9 (01) :132-136
[4]   Time course of corticospinal excitability in reaction time and self-paced movements [J].
Chen, R ;
Yaseen, Z ;
Cohen, LG ;
Hallett, M .
ANNALS OF NEUROLOGY, 1998, 44 (03) :317-325
[5]   Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation [J].
Chen, R ;
Classen, J ;
Gerloff, C ;
Celnik, P ;
Wassermann, EM ;
Hallett, M ;
Cohen, LG .
NEUROLOGY, 1997, 48 (05) :1398-1403
[6]   Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans [J].
Civardi, C ;
Cantello, R ;
Asselman, P ;
Rothwell, JC .
NEUROIMAGE, 2001, 14 (06) :1444-1453
[7]   Studies of neuroplasticity with transcranial magnetic stimulation [J].
Cohen, LG ;
Ziemann, U ;
Chen, R ;
Classen, J ;
Hallett, M ;
Gerloff, C ;
Butefisch, C .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 1998, 15 (04) :305-324
[8]   Functional relevance of cross-modal plasticity in blind humans [J].
Cohen, LG ;
Celnik, P ;
PascualLeone, A ;
Corwell, B ;
Faiz, L ;
Dambrosia, J ;
Honda, M ;
Sadato, N ;
Gerloff, C ;
Catala, MD ;
Hallett, M .
NATURE, 1997, 389 (6647) :180-183
[9]   Alpha band power changes in unimanual and bimanual sequential movements, and during motor transitions [J].
Deiber, MP ;
Caldara, R ;
Ibañez, V ;
Hauert, CA .
CLINICAL NEUROPHYSIOLOGY, 2001, 112 (08) :1419-1435
[10]   Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation [J].
Di Lazzaro, V ;
Oliviero, A ;
Mazzone, P ;
Pilato, F ;
Saturno, E ;
Dileone, M ;
Insola, A ;
Tonali, PA ;
Rothwell, JC .
EXPERIMENTAL BRAIN RESEARCH, 2002, 147 (01) :108-113