Preparation and photocatalytic activity of WO3-MWCNT nanocomposite for degradation of naphthalene under visible light irradiation

被引:89
作者
Farhadian, Mousa [1 ]
Sangpour, Parvaneh [1 ]
Hosseinzadeh, Ghader [2 ]
机构
[1] Mat & Energy Res Ctr MERC, Nanotechnol & Adv Mat Dept, Karaj, Iran
[2] Baqiyatallah Univ Med Sci, Nanobiotechnol Res Ctr, Tehran, Iran
来源
RSC ADVANCES | 2016年 / 6卷 / 45期
关键词
POLYCYCLIC AROMATIC-HYDROCARBONS; TUNGSTEN-OXIDE; TIO2; NANOPARTICLES; WATER; WO3; CARBON; PHOTODEGRADATION; SYSTEMS; NANOTUBES; MECHANISM;
D O I
10.1039/c6ra04642h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, a WO3-multiwalled carbon nanotube nanocomposite has been prepared for the first time by in situ liquid phase process. The prepared nanocomposite was used for photodegradation of dilute solution of naphthalene under visible light irradiation. Based on our results, comparing photocatalytic activity of WO3 nanoparticle with WO3-multiwalled carbon nanotube nanocomposite showed that the photodegradation of naphthalene is negligible by using pure WO3 nanoparticles while, composition of WO3 nanoparticles with multi walled carbon nanotubes could improve significantly their photocatalytic activity under visible light. Due to its high electrical conductivity, carbon nanotube can transfer photogenerated electron on its surface and in this way decreases electron-hole recombination rate and increases photocatalytic activity. After the reaction, the irradiated solution has been analyzed by gas chromatography and mass spectrometry techniques for identification of the naphthalene photodegradation intermediates and products. 1-Naphthol, 1,4-naphthalenedione and 1,2-benzendicarboxilic acid have been determined as intermediates and based on these intermediates a suitable mechanism for photodegradation of naphthalene was suggested.
引用
收藏
页码:39063 / 39073
页数:11
相关论文
共 56 条
[1]   Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J].
Abe, Ryu ;
Takami, Hiticishi ;
Murakami, Naoya ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7780-+
[2]  
Aguilar C. M., 2016, ENVIRON SCI POLLUT R, P1
[3]   Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents [J].
Akhavan, O. ;
Azimirad, R. ;
Safa, S. ;
Larijani, M. M. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7386-7392
[4]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[5]  
Alade A. O., 2012, J. Environ. Chem. Ecotoxicol, V4, P124
[6]   Reaction Mechanism and Activity of WO3-Catalyzed Photodegradation of Organic Substances Promoted by a CuO Cocatalyst [J].
Arai, Takeo ;
Horiguchi, Masumi ;
Yanagida, Masatoshi ;
Gunji, Takahiro ;
Sugihara, Hideki ;
Sayama, Kazuhiro .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (16) :6602-6609
[7]   Evaluation of mild acid oxidation treatments for MWCNT functionalization [J].
Aviles, F. ;
Cauich-Rodriguez, J. V. ;
Moo-Tah, L. ;
May-Pat, A. ;
Vargas-Coronado, R. .
CARBON, 2009, 47 (13) :2970-2975
[8]   Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder [J].
Baek, Yunho ;
Yong, Kijung .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (03) :1213-1218
[9]   Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS [J].
Banerjee, Subarna ;
Mohapatra, Susanta K. ;
Das, Prajna P. ;
Misra, Mano .
CHEMISTRY OF MATERIALS, 2008, 20 (21) :6784-6791
[10]   Conditions for selective photocatalytic degradation of naphthalene in triton X-100 water solutions [J].
Barrios, N ;
Sivov, P ;
D'Andrea, D ;
Núñez, O .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2005, 37 (07) :414-419