Numerical solutions of the von Karman equations for a thin plate

被引:16
作者
DaSilva, PP
Krauth, W
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 1997年 / 8卷 / 02期
关键词
nonlinear elasticity; plate mechanics; von Karman equations; finite element method; large-dimensional minimization;
D O I
10.1142/S0129183197000357
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present an algorithm for the solution of the von Karman equations of elasticity theory and related problems. Our method of successive reconditioning is able to avoid convergence problems at any ratio of the nonlinear stretching and the pure bending energies. We illustrate the power of the method by numerical calculations of pinched or compressed plates subject to fixed boundaries.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 9 条
[1]  
[Anonymous], FINITE ELEMENT METHO
[2]  
BABUSKA I, 1995, MODELING MESH GENERA
[3]  
BENAMAR M, IN PRESS P ROY SOC
[4]  
BERNADOU M, 1994, METHODES ELEMENTS FI
[5]  
Golub G, 2013, Matrix Computations, V4th
[6]  
LANDAU LD, 1954, THEORY ELASTICITY CO, V7
[7]   Boundary layer analysis of the ridge singularity in a thin plate [J].
Lobkovsky, AE .
PHYSICAL REVIEW E, 1996, 53 (04) :3750-3759
[8]  
MacNeal RH., 1986, FINITE ELEMENT METHO
[9]  
Press W. H., 1992, Numerical recipes in C++: The Art of Scientific Computing, V2nd