Theoretical investigation of the first-shell mechanism of nitrile hydratase

被引:52
作者
Hopmann, Kathrin H.
Guo, Jing-Dong
Himo, Fahmi [1 ]
机构
[1] AlbaNova Univ Ctr, Royal Inst Technol, Sch Biotechnol, Dept Theoret Chem, SE-10691 Stockholm, Sweden
[2] Jiangxi Sci & Technol Normal Univ, Dept Appl Chem, Nanchang 330013, Peoples R China
关键词
D O I
10.1021/ic061894c
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The first-shell mechanism of nitrile hydratase (NHase) is investigated theoretically using density functional theory. NHases catalyze the conversion of nitriles to amides and are classified into two groups, the non-heme Fe(III) NHases and the non-corrinoid Co(III) NHases. The active site of the non-heme iron NHase comprises a low-spin iron (S = (1)/(2)) with a remarkable set of ligands, including two deprotonated backbone nitrogens and both cysteine-sulfenic and cysteine-sulfinic acids. A widely proposed reaction mechanism of NHase is the first-shell mechanism in which the nitrile substrate binds directly to the low-spin iron in the sixth coordination site. We have used quantum chemical models of the NHase active site to investigate this mechanism. We present potential energy profiles for the reaction and provide characterization of the intermediates and transition-state structures for the NHase-mediated conversion of acetonitrile. The results indicate that the first-shell ligand Cys114-SO- could be a possible base in the nitrile hydration mechanism, abstracting a proton from the nucleophilic water molecule. The generally suggested role of the Fe(III) center as a Lewis acid, activating the substrate toward nucleophilic attack, is shown to be unlikely. Instead, the metal is suggested to provide electrostatic stabilization to the anionic imidate intermediate, thereby lowering the reaction barrier.
引用
收藏
页码:4850 / 4856
页数:7
相关论文
共 56 条
[1]   Operational stability of Brevibacterium imperialis CBS 489-74 nitrile hydratase [J].
Alfani, F ;
Cantarella, M ;
Spera, A ;
Viparelli, P .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2001, 11 (4-6) :687-697
[2]   INCORPORATION OF SOLVENT EFFECTS INTO DENSITY-FUNCTIONAL CALCULATIONS OF MOLECULAR-ENERGIES AND GEOMETRIES [J].
ANDZELM, J ;
KOLMEL, C ;
KLAMT, A .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (21) :9312-9320
[3]  
[Anonymous], RIKEN
[4]  
Artaud I, 1999, COORDIN CHEM REV, V190, P577
[5]   Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J].
Barone, V ;
Cossi, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (11) :1995-2001
[6]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[7]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .1. THE EFFECT OF THE EXCHANGE-ONLY GRADIENT CORRECTION [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :2155-2160
[8]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[9]  
BLAKEY AJ, 1995, FEMS MICROBIOL LETT, V129, P57
[10]   Modeling the spin-dependent properties of open-shell Fe(III)-containing systems: towards a computational description of nitrile hydratase [J].
Boone, AJ ;
Chang, CH ;
Greene, SN ;
Herz, T ;
Richards, NGJ .
COORDINATION CHEMISTRY REVIEWS, 2003, 238 :291-314