Penalized regression with model-based penalties

被引:67
作者
Heckman, NE [1 ]
Ramsay, JO [1 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2000年 / 28卷 / 02期
关键词
nonparametric regression; penalized least squares; splines;
D O I
10.2307/3315976
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression techniques such as spline smoothing and local fitting depend implicitly on a parametric model. For instance, the cubic smoothing spline estimate of a regression function integral mu based on observations t(i), Y-i is the minimizer of Sigma {Y-i - mu>(*) over bar * (t(i))}(2) + lambda integral>(*) over bar *(mu")(2). Since integral>(*) over bar *(mu")(2) is zero when mu is a line, the cubic smoothing spline estimate favors the parametric model mu>(*) over bar * (t) = alpha (0) + alpha (1)t. Here the authors consider replacing integral>(*) over bar *(mu")(2) with the mon general expression integral>(*) over bar * (L mu)(2) where L is a linear differential operator with possibly nonconstant coefficients. The resulting estimate of mu performs well, particularly if L mu is small. They present an O(n) algorithm far the computation of mu. This algorithm is applicable to a wide class of L's. They also suggest a method for the estimation of L. They study their estimates via simulation and apply them to several data sets.
引用
收藏
页码:241 / 258
页数:18
相关论文
共 31 条
[1]  
Andrews D. F., 1985, Springer Series in Statistics
[2]   A GENERAL METHOD FOR CONSTRUCTION OF INTERPOLATING OR SMOOTHING SPLINE-FUNCTIONS [J].
ANSELONE, PM ;
LAURENT, PJ .
NUMERISCHE MATHEMATIK, 1968, 12 (01) :66-&
[3]   ESTIMATION, FILTERING, AND SMOOTHING IN STATE-SPACE MODELS WITH INCOMPLETELY SPECIFIED INITIAL CONDITIONS [J].
ANSLEY, CF ;
KOHN, R .
ANNALS OF STATISTICS, 1985, 13 (04) :1286-1316
[4]  
ANSLEY CF, 1993, BIOMETRIKA, V80, P75, DOI 10.1093/biomet/80.1.75
[5]   ROBUST LOCALLY WEIGHTED REGRESSION AND SMOOTHING SCATTERPLOTS [J].
CLEVELAND, WS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :829-836
[6]  
Coddington E A., 1961, An Introduction to Ordinary Differential Equations
[7]   A SMOOTHING SPLINE BASED TEST OF MODEL ADEQUACY IN POLYNOMIAL REGRESSION [J].
COX, D ;
KOH, E .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1989, 41 (02) :383-400
[8]   TESTING THE (PARAMETRIC) NULL MODEL HYPOTHESIS IN (SEMIPARAMETRIC) PARTIAL AND GENERALIZED SPLINE MODELS [J].
COX, D ;
KOH, E ;
WAHBA, G ;
YANDELL, BS .
ANNALS OF STATISTICS, 1988, 16 (01) :113-119
[9]  
DEJONG P, 1997, UNPUB FIXED INTERVAL
[10]  
Eubank R.L., 1988, SPLINE SMOOTHING NON