A numerical evaluation of the scalar hexagon integral in the physical region

被引:49
作者
Binoth, T [1 ]
Heinrich, G
Kauer, N
机构
[1] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Durham, IPPP, Durham DH1 3LE, England
关键词
perturbative calculations; scalar integrals; multi-parton reactions;
D O I
10.1016/S0550-3213(03)00052-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We derive an analytic expression for the scalar one-loop pentagon and hexagon functions which is convenient for subsequent numerical integration. These functions are of relevance in the computation of next-to-leading order radiative corrections to multi-particle cross sections. The hexagon integral is represented in terms of n-dimensional triangle functions and (n + 2)-dimensional box functions. If infrared poles are present this representation naturally splits into a finite and a pole part. For a fast numerical integration of the finite part we propose simple one- and two-dimensional integral representations. We set up an iterative numerical integration method to calculate these integrals directly in an efficient way. The method is illustrated by-explicit results for pentagon and hexagon functions with some generic physical kinematics. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:277 / 300
页数:24
相关论文
共 41 条
[1]  
[Anonymous], 1983, QUADPACK
[2]  
[Anonymous], 1992, SMR
[3]   DIMENSIONALLY REGULATED ONE-LOOP INTEGRALS [J].
BERN, Z ;
DIXON, L ;
KOSOWER, DA .
PHYSICS LETTERS B, 1993, 302 (2-3) :299-308
[4]   FUSING GAUGE-THEORY TREE AMPLITUDES INTO LOOP AMPLITUDES [J].
BERN, Z ;
DIXON, L ;
DUNBAR, DC ;
KOSOWER, DA .
NUCLEAR PHYSICS B, 1995, 435 (1-2) :59-101
[5]   DIMENSIONALLY-REGULATED PENTAGON INTEGRALS [J].
BERN, Z ;
DIXON, L ;
KOSOWER, DA .
NUCLEAR PHYSICS B, 1994, 412 (03) :751-816
[6]   FACTORIZATION IN ONE-LOOP GAUGE-THEORY [J].
BERN, Z ;
CHALMERS, G .
NUCLEAR PHYSICS B, 1995, 447 (2-3) :465-518
[7]  
BERN Z, 1993, PHYS LETT B, V318, P649
[8]   DCUHRE - AN ADAPTIVE MULTIDIMENSIONAL INTEGRATION ROUTINE FOR A VECTOR OF INTEGRALS [J].
BERNTSEN, J ;
ESPELID, TO ;
GENZ, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :452-456
[9]   AN ADAPTIVE ALGORITHM FOR THE APPROXIMATE CALCULATION OF MULTIPLE INTEGRALS [J].
BERNTSEN, J ;
ESPELID, TO ;
GENZ, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :437-451
[10]   Reduction formalism for dimensionally regulated one-loop N-point integrals [J].
Binoth, T ;
Guillet, JP ;
Heinrich, G .
NUCLEAR PHYSICS B, 2000, 572 (1-2) :361-386