A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems

被引:22
作者
Metev, B [1 ]
Gueorguieva, D [1 ]
机构
[1] Bulgarian Acad Sci, Inst Informat Technol, Sofia 1113, Bulgaria
关键词
fractional programming; multiobjective decision making; reference point method;
D O I
10.1016/S0377-2217(99)00298-2
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The properties of linear fractional functions facilitate the usage of a well known scalar optimization problem that gives weakly efficient points. Separately, the weak efficiency can be detected with another scalar optimization test based on the same properties. The numerical estimation of the nadir vector is considered as a possible application. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:386 / 390
页数:5
相关论文
共 14 条
[1]   A COMPLETE ALGORITHM FOR LINEAR FRACTIONAL PROGRAMS [J].
ARSHAM, H ;
KAHN, AB .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 20 (07) :11-23
[2]  
Bazaraa MokhtarS., 1979, Nonlinear Programming: Theory and Algorithms
[3]  
Bhatt S. K., 1989, ZOR, Methods and Models of Operations Research, V33, P39, DOI 10.1007/BF01415516
[4]  
Charnes A., 1962, Naval Res Logist Quart, V9, P181, DOI [10.1002/nav.3800090303, DOI 10.1002/NAV.3800090303]
[5]   A RESTRICTED CLASS OF MULTIOBJECTIVE LINEAR FRACTIONAL-PROGRAMMING PROBLEMS [J].
DUTTA, D ;
RAO, JR ;
TIWARI, RN .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 68 (03) :352-355
[6]   A heuristic for estimating nadir criterion values in multiple objective linear programming [J].
Korhonen, P ;
Salo, S ;
Steuer, RE .
OPERATIONS RESEARCH, 1997, 45 (05) :751-757
[7]  
Martos, 1975, NONLINEAR PROGRAMMIN
[8]   USE OF REFERENCE POINTS FOR SOLVING MONLP PROBLEMS [J].
METEV, B .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 80 (01) :193-203
[9]   A COMPROMISE PROCEDURE FOR THE MULTIPLE OBJECTIVE LINEAR FRACTIONAL-PROGRAMMING PROBLEM [J].
NYKOWSKI, I ;
ZOLKIEWSKI, Z .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 19 (01) :91-97
[10]  
Steuer R., 1986, THEORY COMPUTATION A