A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains

被引:14
作者
Behrndt, Jussi [1 ]
Langer, Matthias [2 ]
Lobanov, Igor [3 ]
Lotoreichik, Vladimir [3 ]
Popov, Igor Yu. [3 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
[3] St Petersburg State Univ Informat Technol Mech &, Dept Math, St Petersburg, Russia
基金
英国工程与自然科学研究理事会;
关键词
Laplacian; Self-adjoint extension; Quasi boundary triple; Weyl function; Krein's formula; Non-local boundary condition; Schatten-von Neumann class; Singular numbers; OPERATORS; EXTENSIONS;
D O I
10.1016/j.jmaa.2010.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we investigate the asymptotic behavior of the s-numbers of the resolvent difference of two generalized self-adjoint, maximal dissipative or maximal accumulative Robin Laplacians on a bounded domain Omega with smooth boundary partial derivative Omega. For this we apply the recently introduced abstract notion of quasi boundary triples and Weyl functions from extension theory of symmetric operators together with Krein type resolvent formulae and well-known eigenvalue asymptotics of the Laplace-Beltrami operator on partial derivative Omega. It is shown that the resolvent difference of two generalized Robin Laplacians belongs to the Schatten-von Neumann class of any order p for which p > dim Omega - 1/3 Moreover, we also give a simple sufficient condition for the resolvent difference of two generalized Robin Laplacians to belong to a Schatten-von Neumann class of arbitrary small order Our results extend and complement classical theorems due to M.S. Birman on Schatten-von Neumann properties of the resolvent differences of Dirichlet. Neumann and self-adjoint Robin Laplacians. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:750 / 758
页数:9
相关论文
共 26 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
Agranovich M.S., 1990, ENCYCL MATH SCI, V63, P1
[3]   Generalized Q-functions and Dirichlet-to-Neumann maps for elliptic differential operators [J].
Alpay, Daniel ;
Behrndt, Jussi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (06) :1666-1694
[4]  
[Anonymous], REND SEMIN MAT U POL
[5]   NON-LOCAL BOUNDARY VALUE PROBLEMS FOR ELLIPTIC OPERATORS [J].
BEALS, R .
AMERICAN JOURNAL OF MATHEMATICS, 1965, 87 (02) :315-&
[6]   Boundary value problems for elliptic partial differential operators on bounded domains [J].
Behrndt, Jussi ;
Langer, Matthias .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 243 (02) :536-565
[7]  
BIRMAN M, 1980, ANAL PRILOZHEN, V14, P27
[8]  
Birman M. S., 1962, VESTNIK LENINGRAD U, V17
[9]   M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems [J].
Brown, B. M. ;
Grubb, G. ;
Wood, I. G. .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (03) :314-347
[10]   Spectra of self-adjoint extensions and applications to solvable schrodinger operators [J].
Bruening, Jochen ;
Geyler, Vladimir ;
Pankrashkin, Konstantin .
REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (01) :1-70