Quantum coherent biomolecular energy transfer with spatially correlated fluctuations

被引:119
作者
Nalbach, P. [1 ]
Eckel, J. [1 ]
Thorwart, M. [1 ,2 ]
机构
[1] Univ Freiburg, Freiburg Inst Adv Studies FRIAS, Sch Soft Matter Res, D-79104 Freiburg, Germany
[2] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
关键词
ELECTRONIC EXCITATIONS; DYNAMICS; PROTEIN; BACTERIOCHLOROPHYLL; PHOTOSYNTHESIS; SPECTROSCOPY; CHROMOPHORES; DECOHERENCE; COMPLEX;
D O I
10.1088/1367-2630/12/6/065043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the quantum coherent transfer of excitations between biomolecular chromophores is strongly influenced by spatial correlations of environmental fluctuations. The latter are due either to propagating environmental modes or to local fluctuations with a finite localization length. A simple toy model of a single donor-acceptor pair with spatially separated chromophore sites allows one to investigate the influence of these spatial correlations on quantum coherent excitation transfer. The sound velocity of the solvent determines the wavelength of the environmental modes, which, in turn, has to be compared to the spatial distance of the chromophore sites. When the wavelength exceeds the distance between donor and acceptor sites, we find a strong suppression of decoherence. In addition, we consider two spatially separated donor-acceptor pairs under the influence of propagating environmental modes. Depending on their wavelengths fixed by the sound velocity of the solvent material, the spatial range of correlations may extend over typical interpair distances, which can lead to an increase in the decohering influence of the solvent. Surprisingly, this effect is counteracted by increasing temperature.
引用
收藏
页数:18
相关论文
共 61 条
[1]   How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria [J].
Adolphs, Julia ;
Renger, Thomas .
BIOPHYSICAL JOURNAL, 2006, 91 (08) :2778-2797
[2]  
[Anonymous], 2004, CHARGE ENERGY TRANSF
[3]  
[Anonymous], 2002, Molecular Mechanisms of Photosynthesis
[4]  
[Anonymous], ARXIV09123560
[5]   Beyond Forster Resonance Energy Transfer in Biological and Nanoscale Systems [J].
Beljonne, David ;
Curutchet, Carles ;
Scholes, Gregory D. ;
Silbey, Robert J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (19) :6583-6599
[6]   Static nonlocal dielectric function of liquid water [J].
Bopp, PA ;
Kornyshev, AA ;
Sutmann, G .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1280-1283
[7]   Two-dimensional spectroscopy of electronic couplings in photosynthesis [J].
Brixner, T ;
Stenger, J ;
Vaswani, HM ;
Cho, M ;
Blankenship, RE ;
Fleming, GR .
NATURE, 2005, 434 (7033) :625-628
[8]   Quantum Coherence Enabled Determination of the Energy Landscape in Light-Harvesting Complex II [J].
Calhoun, Tessa R. ;
Ginsberg, Naomi S. ;
Schlau-Cohen, Gabriela S. ;
Cheng, Yuan-Chung ;
Ballottari, Matteo ;
Bassi, Roberto ;
Fleming, Graham R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (51) :16291-16295
[9]   Optimization of Exciton Trapping in Energy Transfer Processes [J].
Cao, Jianshu ;
Silbey, Robert J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (50) :13825-13838
[10]   Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport [J].
Caruso, F. ;
Chin, A. W. ;
Datta, A. ;
Huelga, S. F. ;
Plenio, M. B. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10)