Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats

被引:67
作者
Bhattacharyya, S [1 ]
Lahue, RS [1 ]
机构
[1] Univ Nebraska, Med Ctr, Eppley Inst Res Canc & Allied Dis, Omaha, NE 68198 USA
关键词
D O I
10.1128/MCB.24.17.7324-7330.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trinucleotide repeats (TNRs) undergo frequent mutations in families afflicted with certain neurodegenerative disorders and in model organisms. TNR instability is modulated both by the repeat tract itself and by cellular proteins. Here we identified the Saccharomyces cerevisiae DNA helicase Srs2 as a potent and selective inhibitor of expansions. srs2 mutants had up to 40-fold increased expansion rates of CTG, CAG, and CGG repeats. The expansion phenotype was specific, as mutation rates at dinucleotide repeats, at unique sequences, or for TNR contractions in srs2 mutants were not altered. Srs2 is known to suppress inappropriate genetic recombination; however, the TNR expansion phenotype of srs2 mutants was largely independent of RAD51 and R4D52. Instead, Srs2 mainly functioned with DNA polymerase delta to block expansions. The hellicase activity of Srs2 was important, because a point mutant lacking ATPase function was defective in blocking expansions. Purified Srs2 was substantially better than bacterial UvrD helicase at in vitro unwinding of a DNA substrate that mimicked a TNR hairpin. Disruption of the related helicase gene SGS1 did not lead to excess expansions, nor did wild-type SGS1 suppress the expansion phenotype of an srs2 strain. We conclude that Srs2 selectively blocks triplet repeat expansions through its helicase activity and primarily in conjunction with polymerase delta.
引用
收藏
页码:7324 / 7330
页数:7
相关论文
共 48 条
[1]  
ABOULMAGD O, 1992, OCT P INT SWITCH S Y, V2, P12
[2]   RADH, A GENE OF SACCHAROMYCES-CEREVISIAE ENCODING A PUTATIVE DNA HELICASE INVOLVED IN DNA-REPAIR - CHARACTERISTICS OF RADH MUTANTS AND SEQUENCE OF THE GENE [J].
ABOUSSEKHRA, A ;
CHANET, R ;
ZGAGA, Z ;
CASSIERCHAUVAT, C ;
HEUDE, M ;
FABRE, F .
NUCLEIC ACIDS RESEARCH, 1989, 17 (18) :7211-7219
[3]  
AGUILERA A, 1989, GENETICS, V122, P503
[4]   PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4 [J].
Arora, T ;
Liu, B ;
He, HC ;
Kim, J ;
Murphy, TL ;
Murphy, KM ;
Modlin, RL ;
Shuai, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (24) :21327-21330
[5]  
Bhattacharyya S, 2002, GENETICS, V162, P579
[6]   Eukaryotic DNA polymerases in DNA replication and DNA repair [J].
Burgers, PMJ .
CHROMOSOMA, 1998, 107 (04) :218-227
[7]   MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS [J].
CHRISTIANSON, TW ;
SIKORSKI, RS ;
DANTE, M ;
SHERO, JH ;
HIETER, P .
GENE, 1992, 110 (01) :119-122
[8]   The contribution of cis-elements to disease-associated repeat instability:: clinical and experimental evidence [J].
Cleary, JD ;
Pearson, CE .
CYTOGENETIC AND GENOME RESEARCH, 2003, 100 (1-4) :25-55
[9]   Fourteen and counting: unraveling trinucleotide repeat diseases [J].
Cummings, CJ ;
Zoghbi, HY .
HUMAN MOLECULAR GENETICS, 2000, 9 (06) :909-916
[10]   Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae:: role of RAD1 and the RAD52 epistasis group genes [J].
Dong, Z ;
Fasullo, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (10) :2576-2585