An iteration for indefinite systems and its application to the Navier-Stokes equations

被引:94
作者
Golub, GH [1 ]
Wathen, AJ
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
linear systems; iterative methods; indefinite preconditioning; Navier-Stokes equations;
D O I
10.1137/S106482759529382X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For large sparse systems of linear equations iterative solution techniques are attractive. In this paper we propose and examine the convergence of an iterative method for an important class of nonsymmetric and indefinite coefficient matrices based on the use of an indefinite and symmetric preconditioner. We apply our technique to the linearized Navier-Stokes equations (the Oseen equations).
引用
收藏
页码:530 / 539
页数:10
相关论文
共 21 条
[1]  
CONCUS P, 1976, LECT NOTES MATH SYST, V134
[2]  
DUFF IS, 1994, PITMAN RES, V303, P40
[3]   THE NUMERICAL-SOLUTION OF EQUALITY-CONSTRAINED QUADRATIC-PROGRAMMING PROBLEMS [J].
DYN, N ;
FERGUSON, WE .
MATHEMATICS OF COMPUTATION, 1983, 41 (163) :165-170
[4]   Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations [J].
Elman, H ;
Silvester, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01) :33-46
[5]   PRECONDITIONING BY FAST DIRECT METHODS FOR NONSELF-ADJOINT NONSEPARABLE ELLIPTIC-EQUATIONS [J].
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (01) :44-57
[6]  
Elman HC, 1996, INT J NUMER METH FL, V22, P755, DOI 10.1002/(SICI)1097-0363(19960430)22:8<755::AID-FLD377>3.0.CO
[7]  
2-1
[8]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE-GRADIENT METHOD [J].
FABER, V ;
MANTEUFFEL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) :352-362
[9]  
FRANCA LP, 1993, INCOMPRESSIBLE COMPU, P87
[10]   ON A CLASS OF CHEBYSHEV APPROXIMATION-PROBLEMS WHICH ARISE IN CONNECTION WITH A CONJUGATE-GRADIENT TYPE METHOD [J].
FREUND, R ;
RUSCHEWEYH, S .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :525-542