The membrane potential of Arabidopsis thaliana guard cells;: depolarizations induced by apoplastic acidification

被引:35
作者
Roelfsema, MRG [1 ]
Prins, HBA [1 ]
机构
[1] Univ Groningen, Dept Plant Biol, Lab Plant Physiol, NL-9750 AA Haren, Netherlands
关键词
apoplastic pH; Arabidopsis guard cell; membrane potential; potassium channel (inward rectifier; slow outward rectifier); stable states (hyperpolarized; depolarized); voltage clamp;
D O I
10.1007/s004250050301
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The apoplastic pH of guard cells probably acidifies in response to light, since light induces proton extrusion by both guard cells and epidermal leaf cells. From the data presented here, it is concluded that these apoplastic pH changes will affect K+ fluxes in guard cells of Arabidopsis thaliana (L.) Heynh. Guard cells of this species were impaled with double-barrelled microelectrodes, to measure the membrane potential (E-m) and the plasma-membrane conductance. Guard cells were found to exhibit two states with respect to their E-m, a depolarized and a hyperpolarized slate. Apoplastic acidification depolarized E-m in both states, though the origin of the depolarization differed for each state. In the depolarized state, the change in E-m was the result of a combined pH effect on instantaneously activating conductances and on the slow outward rectifying K+ channel (s-ORC), At a more acidic apoplastic pH, the current through instantaneously activated conductances became more inwardly directed, while the maximum conductance of s-ORC decreased. The effect on s-ORC was accompanied by an acceleration of activation and deactivation of the channel. Experiments with acid loading of guard cells indicated that the effect on s-ORC was due to a lowered intracellular pH, caused by apoplastic acidification. III the hyperpolarized state. the pH-induced depolarization was due to a direct effect of the apoplastic pH on the inward rectifying K+ channel. Acidification shifted the threshold potential of the channel to more positive values. This effect was accompanied by a decrease in activation times and an increase of deactivation times, of the channel, From the changes in E-m and membrane conductance, the expected effect of acidification on K+ fluxes was calculated. It was concluded that apoplastic acidification will increase the K+-efflux in the depolarized stale and reduce the K+-influx in the hyperpolarized state.
引用
收藏
页码:100 / 112
页数:13
相关论文
共 43 条
[1]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[2]   BLUE-LIGHT ACTIVATES ELECTROGENIC ION PUMPING IN GUARD-CELL PROTOPLASTS OF VICIA-FABA [J].
ASSMANN, SM ;
SIMONCINI, L ;
SCHROEDER, JI .
NATURE, 1985, 318 (6043) :285-287
[3]  
BEILBY MJ, 1992, J MEMBRANE BIOL, V125, P25
[4]   THE CHARA PLASMALEMMA AT HIGH PH - ELECTRICAL MEASUREMENTS SHOW RAPID SPECIFIC PASSIVE UNIPORT OF H+ OR OH- [J].
BISSON, MA ;
WALKER, NA .
JOURNAL OF MEMBRANE BIOLOGY, 1980, 56 (01) :1-7
[5]  
Blatt M. R., 1991, METHODS PLANT BIOCH, P281
[6]   POTASSIUM-DEPENDENT, BIPOLAR GATING OF K+ CHANNELS IN GUARD-CELLS [J].
BLATT, MR .
JOURNAL OF MEMBRANE BIOLOGY, 1988, 102 (03) :235-246
[7]   ION CHANNEL GATING IN PLANTS - PHYSIOLOGICAL IMPLICATIONS AND INTEGRATION FOR STOMATAL FUNCTION [J].
BLATT, MR .
JOURNAL OF MEMBRANE BIOLOGY, 1991, 124 (02) :95-112
[8]   K+ CHANNELS OF STOMATAL GUARD-CELLS - CHARACTERISTICS OF THE INWARD RECTIFIER AND ITS CONTROL BY PH [J].
BLATT, MR .
JOURNAL OF GENERAL PHYSIOLOGY, 1992, 99 (04) :615-644
[9]  
BLATT MR, 1993, PLANTA, V191, P330, DOI 10.1007/BF00195690