Point mutants of c-RAF-1 RBD with elevated binding to v-Ha-Ras

被引:32
作者
Fridman, M
Maruta, H
Gonez, J
Walker, F
Treutlein, H
Zeng, J
Burgess, A
机构
[1] Cooperat Res Ctr Cellular Growth Factors, Melbourne, Vic 3050, Australia
[2] Royal Melbourne Hosp, Ludwig Inst Canc Res, Melbourne, Vic 3050, Australia
关键词
D O I
10.1074/jbc.M003193200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A mutational analysis of the Ras-binding domain (RBD) of c-Raf-1 identified three amino acid positions (Asn(64), Ala(85), and Val(88)) where amino acid substitution with basic residues increases the binding of RBD to recombinant v-Ha-Ras. The greatest increase in binding (6-9-fold) was observed with the A85K-RBD mutant. The elevated binding for the A85K-RBD and V88R-RBD mutants was also detected with Ras expressed in cultured mammalian cells, namely NIH-3T3 and BAF cells. None of the wild type residues in RBD positions Asn64, Ala85, and Val(88) have been previously implicated in the interaction with Ras (Block, C., Janknecht, R., Herrmann, C., Nassar, N., and Wittinghofer, A. (1996) Nat. Struct. Biol. 3, 244-251; Nassar, N,, Horn, G., Herrmann, C., Scherer, A. McCormick, F., and Wittinghofer, A. (1995) Nature 375, 554-560). The discovery of elevated binding among the mutants in these positions implies that additional RBD residues can be used to generate the Ras.RBD complex. These findings are of particular significance in the design of Ras antagonists based on the RBD prototype. The A85K-RBD mutant can be used to develop an assay for measuring the level of activated Ras in cultured cells; Sepharose-linked A85K-RBD.GST fusion protein served as an activation-specific probe to precipitate Ras.GTP but not Ras.GDP from epidermal growth factor-stimulated cells. A85K-RBD precipitates up to 5-fold more Ras.GTP from mammalian cells than wild type RBD.
引用
收藏
页码:30363 / 30371
页数:9
相关论文
共 77 条
[1]   GUANOSINE TRIPHOSPHATASE ACTIVATING PROTEIN (GAP) INTERACTS WITH THE P21-RAS EFFECTOR BINDING DOMAIN [J].
ADARI, H ;
LOWY, DR ;
WILLUMSEN, BM ;
DER, CJ ;
MCCORMICK, F .
SCIENCE, 1988, 240 (4851) :518-520
[2]  
[Anonymous], [No title captured]
[3]  
Barnard D, 1995, ONCOGENE, V10, P1283
[4]  
BASU T, 1994, ONCOGENE, V9, P3483
[5]   Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo [J].
Block, C ;
Janknecht, R ;
Herrmann, C ;
Nassar, N ;
Wittinghofer, A .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (03) :244-251
[6]   GENETIC MECHANISMS IN TUMOR INITIATION AND PROGRESSION .10. THE RAS GENE FAMILY AND HUMAN CARCINOGENESIS [J].
BOS, JL .
MUTATION RESEARCH, 1988, 195 (03) :255-271
[7]  
BOS JL, 1989, CANCER RES, V49, P4682
[8]   IDENTIFICATION OF MURINE HOMOLOGS OF THE DROSOPHILA SON OF SEVENLESS GENE - POTENTIAL ACTIVATORS OF RAS [J].
BOWTELL, D ;
FU, P ;
SIMON, M ;
SENIOR, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (14) :6511-6515
[9]   EPIDERMAL GROWTH-FACTOR REGULATES THE EXCHANGE-RATE OF GUANINE-NUCLEOTIDES ON P21RAS IN FIBROBLASTS [J].
BUDAY, L ;
DOWNWARD, J .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (03) :1903-1910
[10]   Increasing complexity of Ras signaling [J].
Campbell, SL ;
Khosravi-Far, R ;
Rossman, KL ;
Clark, GJ ;
Der, CJ .
ONCOGENE, 1998, 17 (11) :1395-1413