Some theory and practical uses of trimmed L-moments

被引:45
作者
Hosking, J. R. M. [1 ]
机构
[1] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
distribution theory; generalized pareto distribution; L-moment ratio diagram;
D O I
10.1016/j.jspi.2006.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Trimmed L-moments, defined by Elamir and Seheult [2003. Trimmed L-moments. Comput. Statist. Data Anal. 43, 299-314], summarize the shape of probability distributions or data samples in a way that remains viable for heavy-tailed distributions, even those for which the mean may not exist. We derive some further theoretical results concerning trimmed L-moments: a relation with the expansion of the quantile function as a weighted sum of Jacobi polynomials; the bounds that must be satisfied by trimmed L-moments; recurrences between trimmed L-moments with different degrees of trimming; and the asymptotic distributions of sample estimators of trimmed L-moments. We also give examples of how trimmed L-moments can be used, analogously to L-moments, in the analysis of heavy-tailed data. Examples include identification of distributions using a trimmed L-moment ratio diagram, shape parameter estimation for the generalized Pareto distribution, and fitting generalized Pareto distributions to a heavy-tailed data sample of computer network traffic. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3024 / 3039
页数:16
相关论文
共 19 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1997, REGIONAL FREQUENCY A, DOI DOI 10.1017/CBO9780511529443
[3]  
David H. A., 2003, Order statistics, V3rd
[4]   Trimmed L-moments [J].
Elamir, EAH ;
Seheult, AH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 43 (03) :299-314
[5]   Exact variance structure of sample L-moments [J].
Elmir, EAH ;
Seheult, AH .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 124 (02) :337-359
[6]  
Embrechts P., 1997, Modelling extremal events for insurance and finance, DOI 10.1007/978-3-642-33483-2
[7]   PROBABILITY WEIGHTED MOMENTS - DEFINITION AND RELATION TO PARAMETERS OF SEVERAL DISTRIBUTIONS EXPRESSABLE IN INVERSE FORM [J].
GREENWOOD, JA ;
LANDWEHR, JM ;
MATALAS, NC ;
WALLIS, JR .
WATER RESOURCES RESEARCH, 1979, 15 (05) :1049-1054
[8]  
HOSKING JRM, 1990, J ROY STAT SOC B MET, V52, P105
[9]   PARAMETER AND QUANTILE ESTIMATION FOR THE GENERALIZED PARETO DISTRIBUTION [J].
HOSKING, JRM ;
WALLIS, JR .
TECHNOMETRICS, 1987, 29 (03) :339-349
[10]  
HOSKING JRM, 2000, RISK, V13, P59