Local hydrogen bonding dynamics and collective reorganization in water:: Ultrafast infrared spectroscopy of HOD/D2O -: art. no. 054506

被引:292
作者
Fecko, CJ
Loparo, JJ
Roberts, ST
Tokmakoff, A
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, George R Harrison Spect Lab, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.1839179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an investigation into hydrogen bonding dynamics and kinetics in water using femtosecond infrared spectroscopy of the OH stretching vibration of HOD in D2O. Infrared vibrational echo peak shift and polarization-selective pump-probe experiments were performed with mid-IR pulses short enough to capture all relevant dynamical processes. The experiments are self-consistently analyzed with a nonlinear response function expressed in terms of three dynamical parameters for the OH stretching vibration: the frequency correlation function, the lifetime, and the second Legendre polynomial dipole reorientation correlation function. It also accounts for vibrational-relaxation-induced excitation of intermolecular motion that appears as heating. The long time, picosecond behavior is consistent with previous work, but new dynamics are revealed on the sub-200 fs time scale. The frequency correlation function is characterized by a 50 fs decay and 180 fs beat associated with underdamped intermolecular vibrations of hydrogen bonding partners prior to 1.4 ps exponential relaxation. The reorientational correlation function observes a 50 fs librational decay prior to 3 ps diffusive reorientation. Both of these correlation functions compare favorably with the predictions from classical molecular dynamics simulations. The time-dependent behavior can be separated into short and long time scales by the 340 fs correlation time for OH frequency shifts. The fast time scales arise from dynamics that are mainly local: fluctuations in hydrogen bond distances and angles within relatively fixed intermolecular configurations. On time scales longer than the correlation time, dephasing and reorientations reflect collective reorganization of the liquid structure. Since the OH transition frequency and dipole are only weakly sensitive to these collective coordinates, this is a kinetic regime which gives an effective rate for exchange of intermolecular structures. (C) 2005 American Institute of Physics.
引用
收藏
页数:18
相关论文
共 101 条
[1]   Nonlinear, nonpolar solvation dynamics in water: The roles of electrostriction and solvent translation in the breakdown of linear response [J].
Aherne, D ;
Tran, V ;
Schwartz, BJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5382-5394
[2]   Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions [J].
Albrecht, AW ;
Hybl, JD ;
Faeder, SMG ;
Jonas, DM .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (24) :10934-10956
[3]   Water dynamics: Vibrational echo correlation spectroscopy and comparison to molecular dynamics simulations [J].
Asbury, JB ;
Steinel, T ;
Stromberg, C ;
Corcelli, SA ;
Lawrence, CP ;
Skinner, JL ;
Fayer, MD .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (07) :1107-1119
[4]   Ultrafast heterodyne detected infrared multidimensional vibrational stimulated echo studies of hydrogen bond dynamics [J].
Asbury, JB ;
Steinel, T ;
Stromberg, C ;
Gaffney, KJ ;
Piletic, IR ;
Goun, A ;
Fayer, MD .
CHEMICAL PHYSICS LETTERS, 2003, 374 (3-4) :362-371
[5]   Transient absorption of vibrationally excited water [J].
Bakker, HJ ;
Nienhuys, HK ;
Gallot, G ;
Lascoux, N ;
Gale, GM ;
Leicknam, JC ;
Bratos, S .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (06) :2592-2598
[6]   Reorientational motion and hydrogen-bond stretching dynamics in liquid water [J].
Bakker, HJ ;
Woutersen, S ;
Nienhuys, HK .
CHEMICAL PHYSICS, 2000, 258 (2-3) :233-245
[7]   DIELECTRIC SPECTRA OF SOME COMMON SOLVENTS IN THE MICROWAVE REGION - WATER AND LOWER ALCOHOLS [J].
BARTHEL, J ;
BACHHUBER, K ;
BUCHNER, R ;
HETZENAUER, H .
CHEMICAL PHYSICS LETTERS, 1990, 165 (04) :369-373
[8]   OBSERVATION OF COLLECTIVE EXCITATIONS IN HEAVY-WATER IN 108 CM-1 MOMENTUM RANGE [J].
BOSI, P ;
DUPRE, F ;
MENZINGER, F ;
SACCHETTI, F ;
SPINELLI, MC .
LETTERE AL NUOVO CIMENTO, 1978, 21 (12) :436-440
[9]   Motion of hydrogen bonds in diluted HDO/D2O solutions:: Direct probing with 150 fs resolution [J].
Bratos, S ;
Gale, GM ;
Gallot, G ;
Hache, F ;
Lascoux, N ;
Leicknam, JC .
PHYSICAL REVIEW E, 2000, 61 (05) :5211-5217
[10]   The dielectric relaxation of water between 0°C and 35°C [J].
Buchner, R ;
Barthel, J ;
Stauber, J .
CHEMICAL PHYSICS LETTERS, 1999, 306 (1-2) :57-63