Random-effects regression analysis of correlated grouped-time survival data

被引:81
作者
Hedeker, D
Siddiqui, O
Hu, FB
机构
[1] Univ Illinois, Sch Publ Hlth, Div Epidemiol & Biostat MC 922, Ctr Hlth Policy Res, Chicago, IL 60612 USA
[2] US FDA, Rockville, MD 20857 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Nutr, Cambridge, MA 02138 USA
关键词
D O I
10.1177/096228020000900206
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Random-effects regression modelling is proposed for analysis of correlated grouped-time survival data. Two analysis approaches are considered. The first treats survival time as an ordinal outcome, which is either right-censored or not. The second approach treats survival time as a set of dichotomous indicators of whether the event occurred for time periods up to the period of the event or censor. For either approach both proportional hazards and proportional odds versions of the random-effects model are developed, while partial proportional hazards and odds generalizations are described for the latter approach. For estimation, a full-information maximum marginal likelihood solution is implemented using numerical quadrature to integrate over the distribution of multiple random effects. The quadrature solution allows some flexibility in the choice of distributions for the random effects; both normal and rectangular distributions are considered in this article. An analysis of a dataset where students are clustered within schools is used to illustrate features of random-effects analysis of clustered grouped-time survival data.
引用
收藏
页码:161 / 179
页数:19
相关论文
共 58 条
[1]  
Agresti A., 1990, Analysis of categorical data
[2]   STATISTICAL MODELING ISSUES IN SCHOOL EFFECTIVENESS STUDIES [J].
AITKIN, M ;
LONGFORD, N ;
PLEWIS, IF ;
WAKEFIELD, WB ;
CHATFIELD, C ;
GOLDSTEIN, H ;
REYNOLDS, D ;
COX, D ;
ECOB, R ;
GRAY, J ;
BELL, JF ;
BURSTEIN, L ;
DAWID, AP ;
HEALY, MJR ;
HUTCHISON, DA ;
KILGORE, S ;
PENDLETON, WW ;
LAIRD, NM ;
LOUIS, TA ;
PRAIS, SJ ;
RUTTER, M ;
MAUGHAN, B ;
OUSTON, J ;
SHARE, DL ;
SMITH, TMF .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1986, 149 :1-43
[3]  
Allison P.D., 1982, SOCIOL METHODOL, V13, P61, DOI [DOI 10.2307/270718, 10.2307/270718]
[4]  
Allison PD, 1995, Survival analysis using sas: A practical guide, V2nd
[5]  
[Anonymous], APPL STAT
[6]  
Bennett S, 1983, Stat Med, V2, P273, DOI 10.1002/sim.4780020223
[7]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[8]   FULL-INFORMATION ITEM FACTOR-ANALYSIS [J].
BOCK, RD ;
GIBBONS, R ;
MURAKI, E .
APPLIED PSYCHOLOGICAL MEASUREMENT, 1988, 12 (03) :261-280
[9]  
BOCK RD, 1989, MULTILEVEL ANAL ED D, P319
[10]  
BOCK RD, 1997, LATENT VARIABLE MODE, P163, DOI DOI 10.1007/978-1-4612-1842-5_8