Synthesis of Diketopyrrolopyrrole Containing Copolymers: A Study of Their Optical and Photovoltaic Properties

被引:113
作者
Kanimozhi, Catherine [2 ]
Balraju, P. [1 ]
Sharma, G. D. [1 ,3 ]
Patil, Satish [2 ]
机构
[1] Jai Narain Vyas Univ, Dept Phys, Mol Elect & Optoelect Device Lab, Jodhpur 342005, Rajasthan, India
[2] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
[3] Jaipur Engn Coll, Jaipur, Rajasthan, India
关键词
POLYMER SOLAR-CELLS; LOW-BAND-GAP; OPEN-CIRCUIT VOLTAGE; CONJUGATED POLYMERS; CHARGE-TRANSPORT; PHOTOCURRENT GENERATION; NANOSCALE MORPHOLOGY; HIGHLY LUMINESCENT; PERFORMANCE; DPP;
D O I
10.1021/jp909183x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as a donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with it maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620 - 800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPP-BBT:PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm(2)). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act its excellent electron donors for bulk heterojunction devices.
引用
收藏
页码:3095 / 3103
页数:9
相关论文
共 55 条
[1]   High performance amorphous metallated π-conjugated polymers for field-effect transistors and polymer solar cells [J].
Baek, Nam Seob ;
Hau, Steven K. ;
Yip, Hin-Lap ;
Acton, Orb ;
Chen, Kung-Shih ;
Jen, Alex K. -Y. .
CHEMISTRY OF MATERIALS, 2008, 20 (18) :5734-5736
[2]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[3]  
2-W
[4]  
Brabec CJ, 2002, ADV FUNCT MATER, V12, P709, DOI 10.1002/1616-3028(20021016)12:10<709::AID-ADFM709>3.0.CO
[5]  
2-N
[6]   Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) -: art. no. 064203 [J].
Brown, PJ ;
Thomas, DS ;
Köhler, A ;
Wilson, JS ;
Kim, JS ;
Ramsdale, CM ;
Sirringhaus, H ;
Friend, RH .
PHYSICAL REVIEW B, 2003, 67 (06)
[7]   Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole) [J].
Bundgaard, E ;
Krebs, FC .
MACROMOLECULES, 2006, 39 (08) :2823-2831
[8]   Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell [J].
Campos, LM ;
Tontcheva, A ;
Günes, S ;
Sonmez, G ;
Neugebauer, H ;
Sariciftci, NS ;
Wudl, F .
CHEMISTRY OF MATERIALS, 2005, 17 (16) :4031-4033
[9]   RATIONAL DESIGNS OF MULTIFUNCTIONAL POLYMERS [J].
CHAN, WK ;
CHEN, YM ;
PENG, ZH ;
YU, LP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (25) :11735-11743
[10]   Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative [J].
Gadisa, A ;
Svensson, M ;
Andersson, MR ;
Inganäs, O .
APPLIED PHYSICS LETTERS, 2004, 84 (09) :1609-1611