One-particle subspace of the Glauber dynamics generator for continuous particle systems

被引:26
作者
Kondratiev, Y [1 ]
Minlos, R
Zhizhina, E
机构
[1] Univ Bielefeld, Fac Math, D-33501 Bielefeld, Germany
[2] Univ Bielefeld, BiBoS, D-33501 Bielefeld, Germany
[3] RAS, IPPI, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Gibbs measures; equilibrium spatial birth and death processes; K-transform spectral analysis of the generator;
D O I
10.1142/S0129055X04002217
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a Glauber-type stochastic dynamics of continuous particle systems in R-d. We construct a one-particle invariant subspace of the generator of this dynamics in the high temperature and low density regime. We prove that under some additional assumptions on the decay of the potential the restriction of the generator on the one-particle subspace is unitary equivalent to the operator of the multiplication by a bounded smooth realvalued function. As a consequence we estimate the spectral gap of the generator and find the second gap between the one-particle branch and the rest of the spectrum.
引用
收藏
页码:1073 / 1114
页数:42
相关论文
共 28 条
[1]  
Albeverio, 2003, ECOLE DETE PROBABILI, V1816
[2]   Analysis and geometry on configuration spaces: The Gibbsian case [J].
Albeverio, S ;
Kondratiev, YG ;
Rockner, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 157 (01) :242-291
[3]  
ANGELESCU N, 2002, AM MATH SOC T, V198, P1
[4]  
[Anonymous], PROBAB MATH STAT
[5]  
Berezansky Yu. M., 1995, SPECTRAL METHODS INF, V1
[6]   The spectral gap for a Glauber-type dynamics in a continuous gas [J].
Bertini, L ;
Cancrini, N ;
Cesi, F .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (01) :91-108
[8]  
Holley R. A., 1987, ACTA MATH, V140, P103
[9]   CALCULUS ON GAUSSIAN AND POISSON WHITE NOISES [J].
ITO, Y ;
KUBO, I .
NAGOYA MATHEMATICAL JOURNAL, 1988, 111 :41-84
[10]  
KODRATIEV Y, 2003, ANN I H POINTCARE