The modular structure of Kauffman networks

被引:75
作者
Bastolla, U
Parisi, G
机构
[1] Forschungszentrum Julich, HLRZ, D-52425 Julich, Germany
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
关键词
disordered systems; genetic regulatory networks; random boolean networks; cellular automata;
D O I
10.1016/S0167-2789(97)00242-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the second paper of a series of two about the structural properties that influence the asymptotic dynamics of random boolean networks. Here we study the functionally independent clusters in which the relevant elements, introduced and studied in our first paper [U. Bastolla, G. Parisi, Physica D 115 (1998) 203-218], are subdivided. We show that the phase transition in random boolean networks can also be described as a percolation transition. The statistical properties of the clusters of relevant elements (that we call modules) give an insight on the scaling behavior of the attractors of the critical networks that, according to Kauffman, have a biological analogy as a model of genetic regulatory systems. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 10 条
[1]   A numerical study of the critical line of Kauffman networks [J].
Bastolla, U ;
Parisi, G .
JOURNAL OF THEORETICAL BIOLOGY, 1997, 187 (01) :117-133
[2]   Closing probabilities in the Kauffman model: An annealed computation [J].
Bastolla, U ;
Parisi, G .
PHYSICA D, 1996, 98 (01) :1-25
[3]   Relevant elements, magnetization and dynamical properties in Kauffman networks: A numerical study [J].
Bastolla, U ;
Parisi, G .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 115 (3-4) :203-218
[4]   MULTIVALLEY STRUCTURE IN KAUFFMAN MODEL - ANALOGY WITH SPIN-GLASSES [J].
DERRIDA, B ;
FLYVBJERG, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (16) :1003-1008
[5]   PHASE-TRANSITIONS IN TWO-DIMENSIONAL KAUFFMAN CELLULAR AUTOMATA [J].
DERRIDA, B ;
STAUFFER, D .
EUROPHYSICS LETTERS, 1986, 2 (10) :739-745
[6]   AN ORDER PARAMETER FOR NETWORKS OF AUTOMATA [J].
FLYVBJERG, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (19) :L955-L960
[7]   EXACT SOLUTION OF KAUFFMAN MODEL WITH CONNECTIVITY ONE [J].
FLYVBJERG, H ;
KJAER, NJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1695-1718
[8]   METABOLIC STABILITY AND EPIGENESIS IN RANDOMLY CONSTRUCTED GENETIC NETS [J].
KAUFFMAN, SA .
JOURNAL OF THEORETICAL BIOLOGY, 1969, 22 (03) :437-&
[9]  
Kauffman SA, 1990, ORIGINS ORDER SELF O
[10]   ANOMALOUS SCALING LAWS IN MULTIFRACTAL OBJECTS [J].
PALADIN, G ;
VULPIANI, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 156 (04) :147-225