The present study was carried out to investigate a possible interaction between the effects of anxiety modulating drugs which act at the GABA-A receptor complex and selective N-methyl-D-aspartic acid (NMDA) coupled glycine receptor (GLY-B receptor) ligands within the dorsal periaqueductal gray (DPAG). The plus-maze performance of rats pretreated with diazepam (0.37 and 0.75 mg/kg, i.p.) or pentylenetetrazole (15 and 30 mg/kg, i.p.), standard anxiolytic and anxiogenic drugs respectively, was assessed following intra-periaqueductal injections of either glycine (0.2 M, 0.4 mu l/30 s, i.c.) or its competitive antagonist, 7-chlorokynurenic acid (7ClKYN, 0.02 M, 0.4 mu l/30 s, i.c.). Whilst diazepam produced a typical anxiolytic effect in intracranially-injected CSF rats, increasing open arm exploration, pentylenetetrazole displayed an opposite anxiogenic profile. Either anxiogenic or anxiolytic effects were seen in peripherally-injected vehicle rats following intra-periaqueductal injections of glycine or 7ClKYN, respectively. Intra-periaqueductal injection of glycine markedly attenuated the anxiolytic effect of diazepam. Moreover, while the anxiogenic effects of pentylenetetrazole were barely changed by glycine, they were markedly attenuated by intra-periaqueductal injection of 7ClKYN. Interaction of diazepam and 7ClKYN produced non-selective sedative-like effects which masked any possible anxiolytic action. Accordingly, the present results suggest that the NMDA-coupled glycine receptors located in the DPAG interfere with anxioselective effects of GABA-A acting drugs on the elevated plus-maze. In spite of the prevailing notion that the NMDA coupled glycine receptor is saturated at in vivo brain concentrations of glycine, our results also suggest that either unoccupied or low-affinity GLY-B receptors are likely to be activated by glycine injection into DPAG. (C) 1998 Elsevier Science.