Stationary velocity distributions in traffic flows

被引:25
作者
Ben-Naim, E [1 ]
Krapivsky, PL
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 06期
关键词
D O I
10.1103/PhysRevE.56.6680
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a traffic flow model that incorporates clustering and passing. We obtain analytically the steady state characteristics of the flow from a Boltzmann-like equation. A single dimensionless parameter, R = c(0) upsilon(0)t(0) with c(0) the concentration, upsilon(0) the velocity range, and t(0)(-1) the passing rate, determines the nature of the steady state. When R much less than 1, uninterrupted flow with single cars occurs. When R much greater than 1, large clusters with average mass [m] similar to R-alpha form, and the flux is J similar to R-gamma. The initial distribution of slow cars governs the statistics. When P-0(upsilon) similar to upsilon(mu) as upsilon --> 0, the scaling exponents are gamma = 1/(mu + 2), alpha = 1/2 when mu > 0, and alpha = (mu + 1)/(mu + 2) when mu < 0.
引用
收藏
页码:6680 / 6686
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1977, MATH MODELS MECH VIB
[2]   DYNAMICAL MODEL OF TRAFFIC CONGESTION AND NUMERICAL-SIMULATION [J].
BANDO, M ;
HASEBE, K ;
NAKAYAMA, A ;
SHIBATA, A ;
SUGIYAMA, Y .
PHYSICAL REVIEW E, 1995, 51 (02) :1035-1042
[3]  
BENJAMINI, 1996, STOCH P APPL, V61, P181
[4]   KINETICS OF CLUSTERING IN TRAFFIC FLOWS [J].
BENNAIM, E ;
KRAPIVSKY, PL ;
REDNER, S .
PHYSICAL REVIEW E, 1994, 50 (02) :822-829
[5]   SELF-ORGANIZATION AND A DYNAMIC TRANSITION IN TRAFFIC-FLOW MODELS [J].
BIHAM, O ;
MIDDLETON, AA ;
LEVINE, D .
PHYSICAL REVIEW A, 1992, 46 (10) :R6124-R6127
[6]   The Kasteleyn model and a cellular automaton approach to traffic flow [J].
Brankov, JG ;
Priezzhev, VB ;
Schadschneider, A ;
Schreckenberg, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10) :L229-L235
[7]  
Derrida B., 2009, NONEQUILIBRIUM STAT, P277, DOI [10.1017/CBO9780511564284.020, DOI 10.1017/CBO9780511564284.020]
[8]   Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics [J].
Evans, MR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16) :5669-5685
[9]  
GARTNER NH, 1987, TRANSPORTATION TRAFF
[10]   Microstructure and microdynamics of uninterrupted traffic flow [J].
Gavrilov, KL .
PHYSICAL REVIEW E, 1997, 56 (04) :4860-4863