Krylov-subspace methods for reduced-order modeling in circuit simulation

被引:307
作者
Freund, RW [1 ]
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
Lanczos algorithm; Arnoldi process; linear dynamical system; VLSI interconnect; transfer function; Pade approximation; stability; passivity; positive real function;
D O I
10.1016/S0377-0427(00)00396-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The simulation of electronic circuits involves the numerical solution of very large-scale, sparse, in general nonlinear, systems of differential-algebraic equations. Often, the size of these systems can be reduced considerably by replacing the equations corresponding to linear subcircuits by approximate models of much smaller state-space dimension. In this paper, we describe the use of Krylov-subspace methods for generating such reduced-order models of linear subcircuits. Particular emphasis is on reduced-order modeling techniques that preserve the passivity of linear RLC subcircuits. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:395 / 421
页数:27
相关论文
共 30 条
[1]  
Aliaga JI, 2000, MATH COMPUT, V69, P1577, DOI 10.1090/S0025-5718-99-01163-1
[2]  
Anderson B., 1973, Network Analysis and Synthesis: AModern Systems Theory Approach
[4]   How to make theoretically passive reduced-order models passive in practice [J].
Bai, ZJ ;
Feldmann, P ;
Freund, RW .
IEEE 1998 CUSTOM INTEGRATED CIRCUITS CONFERENCE - PROCEEDINGS, 1998, :207-210
[5]  
CHIRLIAN PM, 1967, INTEGRATED ACTIVE NE
[6]  
ELFADEL LM, 1997, P 34 ACM IEEE DES AU, P28
[7]   EFFICIENT LINEAR CIRCUIT ANALYSIS BY PADE-APPROXIMATION VIA THE LANCZOS PROCESS [J].
FELDMANN, P ;
FREUND, RW .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1995, 14 (05) :639-649
[8]  
FELDMANN P, 1995, DES AUT CON, P474
[9]  
FELDMANN P, 1995, NUMERICAL SIMULATION
[10]  
FELDMANN P, 1998, 35 DES AUT C SAN FRA