Soil and plant effects on microbial community structure

被引:146
作者
Buyer, JS
Roberts, DP
Russek-Cohen, E
机构
[1] ARS, Sustainable Agr Syst Lab, USDA, Beltsville, MD 20705 USA
[2] Univ Maryland, Dept Anim & Avian Sci, College Pk, MD 20742 USA
关键词
rhizosphere; microbial community; fatty acid; substrate utilization;
D O I
10.1139/W02-095
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated the effects of two different plant species (corn and soybean) and three different soil types on microbial community structure in the rhizosphere. Our working hypothesis was that the rhizosphere effect would be strongest on fast-growing aerobic heterotrophs, while there would be little or no rhizosphere effect on oligotrophic and other slow-growing microorganisms. Culturable bacteria and fungi had larger population densities in the rhizosphere than in bulk soil. Communities were characterized by soil fatty acid analysis and by substrate utilization assays for bacteria and fungi. Fatty acid analysis revealed a very strong soil effect but little plant effect on the microbial community, indicating that the overall microbial community structure was not affected by the rhizosphere. There was a strong rhizosphere effect detected by the substrate utilization assay for fast-growing aerobic heterotrophic bacterial community structure, with soil controls and rhizosphere samples clearly distinguished from each other. There was a much weaker rhizosphere effect on fungal communities than on bacterial communities as measured by the substrate utilization assays. At this coarse level of community analysis, the rhizosphere microbial community was impacted most by soil effects, and the rhizosphere only affected a small portion of the total bacteria.
引用
收藏
页码:955 / 964
页数:10
相关论文
共 30 条
[1]  
Bååth E, 1998, APPL ENVIRON MICROB, V64, P238
[3]   Analysis of fungal communities by sole carbon source utilization profiles [J].
Buyer, JS ;
Roberts, DP ;
Millner, P ;
Russek-Cohen, E .
JOURNAL OF MICROBIOLOGICAL METHODS, 2001, 45 (01) :53-60
[4]   Microbial community structure and function in the spermosphere as affected by soil and seed type [J].
Buyer, JS ;
Roberts, DP ;
Russek-Cohen, E .
CANADIAN JOURNAL OF MICROBIOLOGY, 1999, 45 (02) :138-144
[5]   FATTY-ACID METHYL-ESTER (FAME) PROFILES AS MEASURES OF SOIL MICROBIAL COMMUNITY STRUCTURE [J].
CAVIGELLI, MA ;
ROBERTSON, GP ;
KLUG, MJ .
PLANT AND SOIL, 1995, 170 (01) :99-113
[6]  
Curl E. A., 1986, RHIZOSPHERE
[7]  
Duineveld BM, 1998, APPL ENVIRON MICROB, V64, P4950
[8]   Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA [J].
Duineveld, BM ;
Kowalchuk, GA ;
Keijzer, A ;
van Elsas, JD ;
van Veen, JA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (01) :172-178
[9]   SHIFTS IN THE STRUCTURE OF SOIL MICROBIAL COMMUNITIES IN LIMED FORESTS AS REVEALED BY PHOSPHOLIPID FATTY-ACID ANALYSIS [J].
FROSTEGARD, A ;
BAATH, E ;
TUNLID, A .
SOIL BIOLOGY & BIOCHEMISTRY, 1993, 25 (06) :723-730
[10]   CLASSIFICATION AND CHARACTERIZATION OF HETEROTROPHIC MICROBIAL COMMUNITIES ON THE BASIS OF PATTERNS OF COMMUNITY-LEVEL SOLE-CARBON-SOURCE UTILIZATION [J].
GARLAND, JL ;
MILLS, AL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (08) :2351-2359