Functional genomic methodologies

被引:21
作者
Ginsberg, Stephen D.
Mirnics, Karoly
机构
[1] NYU, Sch Med, Nathan Kline Inst, Ctr Dementia Res, Orangeburg, NY 10962 USA
[2] NYU, Sch Med, Dept Psychiat, Orangeburg, NY 10962 USA
[3] NYU, Sch Med, Dept Physiol & Neurosci, Orangeburg, NY 10962 USA
[4] Univ Pittsburgh, Sch Med, Dept Psychiat, Pittsburgh, PA 15261 USA
[5] Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15261 USA
来源
FUNCTIONAL GENOMICS AND PROTEOMICS IN THE CLINICAL NEUROSCIENCES | 2006年 / 158卷
关键词
microarray; RNA amplification; gene expression; molecular fingerprint; QPCR; transcriptome; brain;
D O I
10.1016/S0079-6123(06)58002-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem,tissues.
引用
收藏
页码:15 / 40
页数:26
相关论文
共 205 条
[1]  
Aittokallio Tero, 2003, J Bioinform Comput Biol, V1, P541, DOI 10.1142/S0219720003000319
[2]   Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways [J].
Altar, CA ;
Laeng, P ;
Jurata, LW ;
Brockman, JA ;
Lemire, A ;
Bullard, J ;
Bukhman, YV ;
Young, TA ;
Charles, V ;
Palfreyman, MG .
JOURNAL OF NEUROSCIENCE, 2004, 24 (11) :2667-2677
[3]   METHOD FOR DETECTION OF SPECIFIC RNAS IN AGAROSE GELS BY TRANSFER TO DIAZOBENZYLOXYMETHYL-PAPER AND HYBRIDIZATION WITH DNA PROBES [J].
ALWINE, JC ;
KEMP, DJ ;
STARK, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (12) :5350-5354
[4]   Determination of the differentially expressed genes in microarray experiments using local FDR [J].
Aubert, J ;
Bar-Hen, A ;
Daudin, JJ ;
Robin, S .
BMC BIOINFORMATICS, 2004, 5 (1)
[5]  
Ausubel F.M., 1998, CURRENT PROTOCOLS MO, DOI 10.1002/0471142727.mbprefs66
[6]   Gene expression profiling in the post-mortem human brain - no cause for dismay [J].
Bahn, S ;
Augood, S ;
Standaert, DG ;
Starkey, M ;
Emson, PC .
JOURNAL OF CHEMICAL NEUROANATOMY, 2001, 22 (1-2) :79-94
[7]   An open letter on microarray data from the MGED Society [J].
Ball, C ;
Brazma, A ;
Causton, H ;
Chervitz, S ;
Edgar, R ;
Hingamp, P ;
Matese, JC ;
Parkinson, H ;
Quackenbush, J ;
Ringwald, M ;
Sansone, SA ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Tateno, Y ;
Taylor, R ;
White, J ;
Winegarden, N .
MICROBIOLOGY-SGM, 2004, 150 :3522-3524
[8]  
Ball C, 2004, ENVIRON HEALTH PERSP, V112, pA666
[9]   Submission of microarray data to public repositories [J].
Ball, CA ;
Brazma, A ;
Causton, H ;
Chervitz, S ;
Edgar, R ;
Hingamp, P ;
Matese, JC ;
Parkinson, H ;
Quackenbush, J ;
Ringwald, M ;
Sansone, SA ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Tateno, Y ;
Taylor, R ;
White, J ;
Winegarden, N .
PLOS BIOLOGY, 2004, 2 (09) :1276-1277
[10]  
Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562