CG dinucleotide periodicities recognized by the Dnmt3a-Dnmt3L complex are distinctive at retroelements and imprinted domains

被引:30
作者
Glass, Jacob L. [2 ]
Fazzari, Melissa J. [2 ,3 ]
Ferguson-Smith, Anne C. [4 ]
Greally, John M. [1 ,2 ]
机构
[1] Albert Einstein Coll Med, Dept Med Hematol, Bronx, NY 10461 USA
[2] Albert Einstein Coll Med, Dept Genet Computat Genet, Bronx, NY 10461 USA
[3] Albert Einstein Coll Med, Dept Epidemiol & Populat Hlth, Bronx, NY 10461 USA
[4] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3EG, England
基金
美国国家卫生研究院; 英国惠康基金;
关键词
MATERNAL GENOMIC IMPRINTS; DE-NOVO METHYLATION; DNA METHYLATION; CPG-ISLANDS; CYTOSINE METHYLATION; TRANSCRIPTION UNITS; GERM-CELLS; DNMT3L; GENES; SEQUENCES;
D O I
10.1007/s00335-009-9232-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Dnmt3a and Dnmt3L genes are critical mediators of cytosine methylation during gametogenesis, with major actions noted at transposable elements and imprinted loci. The Dnmt3a-Dnmt3L complex was recently described to have preferential activity at CG dinucleotides located 8-10 bp apart. Because cytosine methylation is heterogeneously distributed in the genome, we tested whether this relative sequence preference explains the effects of mutation of the Dnmt3a and Dnmt3L genes using bioinformatic analysis. We found that the human and mouse genomes are significantly enriched in a CG dinucleotide periodicity of 2 bp, leading to an increased frequency of CGs spaced 8 bp apart that represent widespread targets for this protein complex. When we broke down the human and mouse genomes by annotation, we found that this significant 2-bp periodicity and increased 8-bp periodicity are maintained in Alu SINEs in both species. The 8-bp periodicity was mapped genome-wide, identifying enrichment at the promoters of both paternally and maternally methylated imprinted genes and at CG dinucleotide-enriched sequences. We conclude that CG dinucleotide periodicity helps to explain some but not all of the relative sequence specificity of mutations of Dnmt3a or Dnmt3L in the establishment of germline cytosine methylation patterns.
引用
收藏
页码:633 / 643
页数:11
相关论文
共 42 条
[1]   CpG island mapping by epigenome prediction [J].
Bock, Christoph ;
Walter, Joern ;
Paulsen, Martina ;
Lengauer, Thomas .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (06) :1055-1070
[2]   CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure [J].
Bock, Christoph ;
Paulsen, Martina ;
Tierling, Sascha ;
Mikeska, Thomas ;
Lengauer, Thomas ;
Walter, Joern .
PLOS GENETICS, 2006, 2 (03) :243-252
[3]   Dnmt3L and the establishment of maternal genomic imprints [J].
Bourc'his, D ;
Xu, GL ;
Lin, CS ;
Bollman, B ;
Bestor, TH .
SCIENCE, 2001, 294 (5551) :2536-2539
[4]   Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L [J].
Bourc'his, D ;
Bestor, TH .
NATURE, 2004, 431 (7004) :96-99
[5]   Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity [J].
Carroll, ML ;
Roy-Engel, AM ;
Nguyen, SV ;
Salem, AH ;
Vogel, E ;
Vincent, B ;
Myers, J ;
Ahmad, Z ;
Nguyen, L ;
Sammarco, M ;
Watkins, WS ;
Henke, J ;
Makalowski, W ;
Jorde, LB ;
Deininger, PL ;
Batzer, MA .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (01) :17-40
[6]   KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints [J].
Ciccone, David N. ;
Su, Hui ;
Hevi, Sarah ;
Gay, Frederique ;
Lei, Hong ;
Bajko, Jeffrey ;
Xu, Guoliang ;
Li, En ;
Chen, Taiping .
NATURE, 2009, 461 (7262) :415-U115
[7]   CPNPG METHYLATION IN MAMMALIAN-CELLS [J].
CLARK, SJ ;
HARRISON, J ;
FROMMER, M .
NATURE GENETICS, 1995, 10 (01) :20-27
[8]   MUTAGENIC DEAMINATION OF CYTOSINE RESIDUES IN DNA [J].
DUNCAN, BK ;
MILLER, JH .
NATURE, 1980, 287 (5782) :560-561
[9]   Mechanisms regulating imprinted genes in clusters [J].
Edwards, Carol A. ;
Ferguson-Smith, Anne C. .
CURRENT OPINION IN CELL BIOLOGY, 2007, 19 (03) :281-289
[10]   Epigenomics: Beyond CpG islands [J].
Fazzari, MJ ;
Greally, JM .
NATURE REVIEWS GENETICS, 2004, 5 (06) :446-455