Combining Ranking with Traditional Methods for Ordinal Class Imbalance

被引:6
作者
Cruz, Ricardo [1 ]
Fernandes, Kelwin [1 ,2 ]
Pinto Costa, Joaquim F. [3 ]
Perez Ortiz, Marfa [4 ]
Cardoso, Jaime S. [1 ,2 ]
机构
[1] INESC TEC, Porto, Portugal
[2] Univ Porto, Fac Engn, Porto, Portugal
[3] Univ Porto, Fac Sci, Porto, Portugal
[4] Univ Loyola Andalucia, Cordoba, Spain
来源
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II | 2017年 / 10306卷
关键词
Ordinal classification; Class imbalance; Ranking; SVM; REGRESSION;
D O I
10.1007/978-3-319-59147-6_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In classification problems, a dataset is said to be imbalanced when the distribution of the target variable is very unequal. Classes contribute unequally to the decision boundary, and special metrics are used to evaluate these datasets. In previous work, we presented pairwise ranking as a method for binary imbalanced classification, and extended to the ordinal case using weights. In this work, we extend ordinal classification using traditional balancing methods. A comparison is made against traditional and ordinal SVMs, in which the ranking adaption proposed is found to be competitive.
引用
收藏
页码:538 / 548
页数:11
相关论文
共 15 条
  • [1] Cardoso JS, 2007, J MACH LEARN RES, V8, P1393
  • [2] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)
  • [3] Chu S., 2005, P 22 INT C MACH LEAR, P145, DOI DOI 10.1145/1102351.1102370
  • [4] Chu W, 2005, J MACH LEARN RES, V6, P1019
  • [5] Cruz R., 2017, LNCS, P538
  • [6] Cruz R., 2016, INT JOINT C NEUR NET
  • [7] Metrics to guide a multi-objective evolutionary algorithm for ordinal classification
    Cruz-Ramirez, M.
    Hervas-Martinez, C.
    Sanchez-Monedero, J.
    Gutierrez, P. A.
    [J]. NEUROCOMPUTING, 2014, 135 : 21 - 31
  • [8] da Costa Joaquim F. Pinto, 2010, 2010 Ninth International Conference on Machine Learning and Applications (ICMLA 2010), P59, DOI 10.1109/ICMLA.2010.16
  • [9] Herbrich R, 1999, IEE CONF PUBL, P97, DOI 10.1049/cp:19991091
  • [10] LICHMAN M., 2013, UCI MACHINE LEARNING