Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding

被引:76
作者
Ma, Li [1 ,2 ]
Crawford, Melba M. [2 ]
Tian, Jinwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Multispectral Informat Proc Technol, Wuhan 430074, Hubei, Peoples R China
[2] Purdue Univ, Applicat Remote Sensing Lab, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
Hyperspectral images; Anomaly detection; Robust locally linear embedding (RLLE); Dimensionality reduction (DR); RX detector; NONLINEAR DIMENSIONALITY REDUCTION;
D O I
10.1007/s10762-010-9630-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, anomaly detection in hyperspectral images is investigated using robust locally linear embedding (RLLE) for dimensionality reduction in conjunction with the RX anomaly detector. The new RX-RLLE method is implemented for large images by subdividing the original image and applying the RX-RLLE operations to each subset. Moreover, from the kernel view of LLE, it is demonstrated that the RX-RLLE is equivalent to introducing a locally linear embedding (LLE) kernel into the kernel RX (KRX) algorithm. Experimental results indicate that the RX-RLLE has good anomaly detection performance and that RLLE has superior performance to LLE and principal component analysis (PCA) for dimensionality reduction in the application of anomaly detection.
引用
收藏
页码:753 / 762
页数:10
相关论文
共 20 条
[1]   Exploiting manifold geometry in hyperspectral imagery [J].
Bachmann, CM ;
Ainsworth, TL ;
Fusina, RA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :441-454
[2]  
Bengio Y, 2004, ADV NEUR IN, V16, P177
[3]   Anomaly detection and classification for hyperspectral imagery [J].
Chang, CI ;
Chiang, SS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06) :1314-1325
[4]   Robust locally linear embedding [J].
Chang, H ;
Yeung, DY .
PATTERN RECOGNITION, 2006, 39 (06) :1053-1065
[5]  
CHANG H, 2005, HKUSTCS0512 DEP COMP
[6]   Dimensionality reduction of hyperspectral imagery using improved locally linear embedding [J].
Chen, Guangyi ;
Qian, Shen-En .
JOURNAL OF APPLIED REMOTE SENSING, 2007, 1
[7]   On the impact of covariance contamination for adaptive detection in hyperspectral imaging [J].
Farrell, MD ;
Mersereau, RM .
IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (09) :649-652
[8]   On the impact of PCA dimension reduction for hyperspectral detection of difficult targets [J].
Farrell, MD ;
Mersereau, RM .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (02) :192-195
[9]  
Ham J., 2004, P 21 INT C MACH LEAR, DOI DOI 10.1145/1015330.1015417
[10]  
Han T, 2005, INT GEOSCI REMOTE SE, P1237