Microarray standard data set and figures of merit for comparing data processing methods and experiment designs

被引:68
作者
He, YDD [1 ]
Dai, HY [1 ]
Schadt, EE [1 ]
Cavet, G [1 ]
Edwards, SW [1 ]
Stepaniants, SB [1 ]
Duenwald, S [1 ]
Kleinhanz, R [1 ]
Jones, AR [1 ]
Shoemaker, DD [1 ]
Stoughton, RB [1 ]
机构
[1] Rosetta Inpharmat Inc, Kirkland, WA 98034 USA
关键词
D O I
10.1093/bioinformatics/btg126
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: There is a very large and growing level of effort toward improving the platforms, experiment designs, and data analysis methods for microarray expression profiling. Along with a growing richness in the approaches there is a growing confusion among most scientists as to how to make objective comparisons and choices between them for different applications. There is a need for a standard framework for the microarray community to compare and improve analytical and statistical methods. Results: We report on a microarray data set comprising 204 in-situ synthesized oligonucleotide arrays, each hybridized with two-color cDNA samples derived from 20 different human tissues and cell lines. Design of the similar to 24 000 60mer oligonucleotides that report similar to2500 known genes on the arrays, and design of the hybridization experiments, were carried out in a way that supports the performance assessment of alternative data processing approaches and of alternative experiment and array designs. We also propose standard figures of merit for success in detecting individual differential expression changes or expression levels, and for detecting similarities and differences in expression patterns across genes and experiments. We expect this data set and the proposed figures of merit will provide a standard framework for much of the microarray community to compare and improve many analytical and statistical methods relevant to microarray data analysis, including image processing, normalization, error modeling, combining of multiple reporters per gene, use of replicate experiments, and sample referencing schemes in measurements based on expression change.
引用
收藏
页码:956 / 965
页数:10
相关论文
共 69 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]  
Amundson SA, 2000, RADIAT RES, V154, P342, DOI 10.1667/0033-7587(2000)154[0342:IOPMBI]2.0.CO
[4]  
2
[5]  
Amundson SA, 2001, RADIAT RES, V156, P657, DOI 10.1667/0033-7587(2001)156[0657:IOGEAA]2.0.CO
[6]  
2
[7]   Gene expression informatics - it's all in your mine [J].
Bassett, DE ;
Eisen, MB ;
Boguski, MS .
NATURE GENETICS, 1999, 21 (Suppl 1) :51-55
[8]  
Bilban Martin, 2002, Current Issues in Molecular Biology, V4, P57
[9]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[10]   Image metrics in the statistical analysis of DNA microarray data [J].
Brown, CS ;
Goodwin, PC ;
Sorger, PK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :8944-8949