On the application of Gabor filtering in supervised image classification

被引:20
作者
Angelo, NP [1 ]
Haertel, V [1 ]
机构
[1] Univ Fed Rio Grande Sul, Ctr Remote Sensing, BR-91501970 Porto Alegre, RS, Brazil
关键词
D O I
10.1080/01431160210163146
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Image texture can be an important source of data in the image classification process. Although not as easily measurable as image spectral attributes, image texture has proved in a number of cases to be a valuable source of data capable of increasing the accuracy of the classification process. In remote sensing there are cases in which classes are spectrally very similar, but present distinct spatial distribution, i.e. different textural characteristics. Image texture becomes then an important source of information in the classification process. The aim of this study is (1) to develop and test a supervised image classification method based on the image spatial texture as extracted by the Gabor filtering concept and (2) to investigate experimentally the performance of the classification process as a function of the Gabor filter's parameters. A set of Gabor filters is initially generated for the given image data. The filter parameters related to the relevant spatial frequencies present in the image are estimated from the available samples via the Fourier transform. Each filter generates one filtered image which characterizes the particular spatial frequency implemented by the filter parameters. As a result, a number of filtered images, sometimes referred to as 'textural bands', are generated and the originally univariate problem is transformed into a multivariate one, every pixel being defined by a vector with dimension identical to the number of filters used. The multidimensional image data can then be classified by implementing an appropriate supervised classification method. In this study the Euclidean Minimum Distance and the Gaussian Maximum Likelihood classifiers are used. The adequacy of the selected Gabor filter parameters (namely, the spatial frequency and the filter's spatial extent) are then examined as a function of the resulting classification accuracy. The proposed supervised methodology is tested using both synthetic and real image data. Results are presented and analysed.
引用
收藏
页码:2167 / 2189
页数:23
相关论文
共 9 条
[1]   MULTICHANNEL TEXTURE ANALYSIS USING LOCALIZED SPATIAL FILTERS [J].
BOVIK, AC ;
CLARK, M ;
GEISLER, WS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (01) :55-73
[2]  
Brodatz P, 1966, TEXTURES PHOTOGRAPHI
[3]   UNCERTAINTY RELATION FOR RESOLUTION IN SPACE, SPATIAL-FREQUENCY, AND ORIENTATION OPTIMIZED BY TWO-DIMENSIONAL VISUAL CORTICAL FILTERS [J].
DAUGMAN, JG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (07) :1160-1169
[4]  
DUNN DF, 1996, IEEE T IMAGE PROCESS, V4, P947
[5]  
Gabor D., 1946, J I ELEC ENGRS PART, V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[6]   STATISTICAL AND STRUCTURAL APPROACHES TO TEXTURE [J].
HARALICK, RM .
PROCEEDINGS OF THE IEEE, 1979, 67 (05) :786-804
[7]   UNSUPERVISED TEXTURE SEGMENTATION USING GABOR FILTERS [J].
JAIN, AK ;
FARROKHNIA, F .
PATTERN RECOGNITION, 1991, 24 (12) :1167-1186
[8]   A COMBINED NEURAL-NETWORK APPROACH FOR TEXTURE CLASSIFICATION [J].
RAGHU, PP ;
POONGODI, R ;
YEGNANARAYANA, B .
NEURAL NETWORKS, 1995, 8 (06) :975-987
[9]  
Sklansky J, 1978, IEEE T SYST MAN CYB, V13, P907