Theory of magnetoelectric effects in ferrite piezoelectric nanocomposites

被引:106
作者
Petrov, V. M. [1 ]
Srinivasan, G.
Bichurin, M. I.
Gupta, A.
机构
[1] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[2] Novgorod State Univ, Inst Elect Informat Syst, Veliky Novgorod 173003, Russia
[3] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 22期
关键词
D O I
10.1103/PhysRevB.75.224407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model is presented for low-frequency magnetoelectric (ME) effects in nanobilayers, nanopillars, and nanowires of nickel ferrite (NFO) and lead zirconate titanate (PZT) on MgO substrates or templates. The clamping effect of the substrate for the bilayer and pillars and of the template for the wires have been considered in determining the ME voltage coefficient. The ME interactions have been found to be the strongest for field orientations corresponding to minimum demagnetizing fields, i.e., in-plane fields for bilayers and axial fields for pillars and wires. It is shown that the coupling strength decreases with increasing substrate clamping. For increasing volume of MgO substrate in a bilayer, (i) the ME coefficient drops exponentially and (ii) the PZT volume required for maximum ME effects increases. For nanopillars of NFO in PZT matrix on MgO, the substrate pinning effects are negligible only when the length of the pillar is much greater than its radius. In the case of NFO-PZT nanowires grown on a MgO nanowire template, the ME coefficient is predicted to decrease from a maximum to approaching zero as the radius of the template layer is increased.
引用
收藏
页数:6
相关论文
共 29 条
[1]  
*AM PIEZ CER INC, 1998, PIEZ CER MAT PROP
[2]   Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers [J].
Bichurin, MI ;
Petrov, VM ;
Srinivasan, G .
PHYSICAL REVIEW B, 2003, 68 (05)
[3]   Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites [J].
Bichurin, MI ;
Petrov, VM ;
Srinivasan, G .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (12) :7681-7683
[4]   Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer [J].
Cai, N ;
Nan, CW ;
Zhai, JY ;
Lin, YH .
APPLIED PHYSICS LETTERS, 2004, 84 (18) :3516-3518
[5]   Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient [J].
Dong, S ;
Zhai, J ;
Bai, F ;
Li, JF ;
Viehland, D .
APPLIED PHYSICS LETTERS, 2005, 87 (06)
[6]   Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity [J].
Dong, Shuxiang ;
Zhai, Junyi ;
Li, Jiefang ;
Viehland, D. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[7]   Giant magnetoelectric effect in laminate composites [J].
Dong, SX ;
Li, JF ;
Viehland, D .
PHILOSOPHICAL MAGAZINE LETTERS, 2003, 83 (12) :769-773
[8]  
HELLWEGE KH, 1970, CRYSTAL SOLID STATE, V4
[9]   LOW-TEMPERATURE PHASE OF YTTRIUM IRON-GARNET (YIG) AND ITS 1ST-ORDER MAGNETOELECTRIC EFFECT [J].
KITA, E ;
TAKANO, S ;
TASAKI, A ;
SIRATORI, K ;
KOHN, K ;
KIMURA, S .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (10) :5659-5661
[10]  
KWARK BS, 1994, PHYS REV B, V49, P14865