POP:: Patchwork of parts models for object recognition

被引:63
作者
Amit, Yali [1 ]
Trouve, Alain
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[3] Ecole Normale Super, CMLA, Cachan, France
基金
美国国家科学基金会;
关键词
deformable models; model estimation; multi-object configurations; object detection;
D O I
10.1007/s11263-006-0033-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We formulate a deformable template model for objects with an efficient mechanism for computation and parameter estimation. The data consists of binary oriented edge features, robust to photometric variation and small local deformations. The template is defined in terms of probability arrays for each edge type. A primary contribution of this paper is the definition of the instantiation of an object in terms of shifts of a moderate number local submodels-parts-which are subsequently recombined using a patchwork operation, to define a coherent statistical model of the data. Object classes are modeled as mixtures of patchwork of parts (POP) models that are discovered sequentially as more class data is observed. We define the notion of the support associated to an instantiation, and use this to formulate statistical models for multi-object configurations including possible occlusions. All decisions on the labeling of the objects in the image are based on comparing likelihoods. The combination of a deformable model with an efficient estimation procedure yields competitive results in a variety of applications with very small training sets, without need to train decision boundaries-only data from the class being trained is used. Experiments are presented on the MNIST database, reading zipcodes, and face detection.
引用
收藏
页码:267 / 282
页数:16
相关论文
共 29 条