The Split Bregman Method for L1-Regularized Problems

被引:3367
作者
Goldstein, Tom [1 ]
Osher, Stanley [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2009年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
constrained optimization; L1-regularization; compressed sensing; total variation denoising; MRI;
D O I
10.1137/080725891
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The class of L1-regularized optimization problems has received much attention recently because of the introduction of "compressed sensing," which allows images and signals to be reconstructed from small amounts of data. Despite this recent attention, many L1-regularized problems still remain difficult to solve, or require techniques that are very problem-specific. In this paper, we show that Bregman iteration can be used to solve a wide variety of constrained optimization problems. Using this technique, we propose a "split Bregman" method, which can solve a very broad class of L1-regularized problems. We apply this technique to the Rudin-Osher-Fatemi functional for image denoising and to a compressed sensing problem that arises in magnetic resonance imaging.
引用
收藏
页码:323 / 343
页数:21
相关论文
共 30 条
[1]  
Baraniuk Richard, 2007, 2007 IEEE Radar Conference, P128, DOI 10.1109/RADAR.2007.374203
[2]  
Boyd S., 2004, CONVEX OPTIMIZATION, DOI DOI 10.1017/CBO9780511804441
[3]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[4]  
Bregman L. M., 1967, USSR Comput. Math. Math. Phys., V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[5]  
CAI JF, MATH COMP IN PRESS
[6]   Signal recovery from random projections [J].
Candès, E ;
Romberg, J .
COMPUTATIONAL IMAGING III, 2005, 5674 :76-86
[7]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[8]  
Chambolle A, 2005, LECT NOTES COMPUT SC, V3757, P136, DOI 10.1007/11585978_10
[9]   A nonlinear primal-dual method for total variation-based image restoration [J].
Chan, TF ;
Golub, GH ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :1964-1977
[10]  
Darbon J, 2005, LECT NOTES COMPUT SC, V3522, P351